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Abstract

We show that many economic conclusions derived from linear utility models (e.g.,

Bulow and Roberts, 1989) approximately extend to non-linear utility models. Specifi-

cally, we quantify the extent to which agents with non-linear utilities resemble agents

with linear utilities, and provide a general framework for extending the approximation

guarantees of simple mechanisms from agents with linear utilities to agents with non-

linear utilities. We apply the framework for the objectives of welfare and revenue on

non-linear utility models that include agents with budget constraints and agents with

risk aversion, and conclude that simple mechanisms are approximately optimal for

these non-linear utility models. Moreover, we show that when the seller only observes

the demand functions, not the detailed non-linear utility models, the simple marginal

revenue maximization mechanism is robustly optimal.

1 Introduction

Many classical papers on mechanism design, and in particular auction theory, focus on agents

with linear utilities, i.e., the agents’ utilities are linear functions of both their values for the
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goods, and their payments to the principal. The simplifying assumption of linear utilities al-

lows the derivation of simple closed-form characterizations and nice economic interpretations

of optimal mechanisms (e.g., Myerson, 1981; Bulow and Roberts, 1989). However, agents

in practice deviate significantly from linear utilities, for example, through private budget

constraints or risk aversion over probabilistic outcomes. Notably, optimal mechanisms for

agents with non-linear utilities are in general not simple and therefore difficult to understand

precisely. For example, the optimal mechanism for a single-item single-agent environment

with a private budget constraint admits no closed-form characterization (Che and Gale,

2000).1

The dramatic differences for designing optimal mechanisms for agents with non-linear

utilities raise the concern about the robustness of the economic conclusions we observed

when assuming linear utilities. In this paper, by analyzing the performances of simple

mechanisms, we identify conditions under which the economic conclusions derived from linear

utility models approximately extend to general (i.e., non-linear) utility models.

Our definition of simple mechanisms are motivated by Bulow and Roberts (1989) who,

as later interpreted by Alaei et al. (2013), show that for linear agents,2 every mechanism

can be interpreted as a pricing-based mechanism, i.e., mechanism where the menu offered

to each agent is equivalent to a distribution over posted prices. Moreover, the multi-agent

mechanism design problem can be decomposed as single-agent mechanism design problems

through the feasibility constraints in quantile space via the reduced-form approach of Bor-

der (1991). Note that for a linear agent, the quantile of an agent is defined to be drawn

uniformly between 0 and 1 and a lower quantile implies a higher value for the agent. From

Bulow and Roberts (1989), the solution to these single-agent problems for linear agents

are (possibly randomized) price postings and the optimal mechanism can be interpreted as

marginal revenue maximization.

In environments with a single agent, pricing-based mechanisms can be generalized to

non-linear agents by considering per-unit prices, i.e., given per-unit price p, an agent can

purchase any lottery with winning probability q ∈ [0, 1] and pay price p · q in expectation.

When there are multiple agents, the definition of quantile space is not straightforward in

order to implement the pricing-based mechanism in quantile space analogous to linear agents.

In particular, the type space of a non-linear agent can be multi-dimensional. For example,

for a risk averse agent, her private type could include both her value for the item and

1Che and Gale (2000) provide a characterization showing that the optimal mechanism must be the solution
of a differential equation. However, solving the differential equation given arbitrary type distribution is
generally intractable.

2In this paper, we write “agents with linear utilities” as “linear agents” for short, and “agents with
non-linear utilities” as “non-linear agents”.
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her risk attitude. In our paper, we provide a natural definition that maps the potentially

multi-dimensional type of a non-linear agent to a single-dimensional quantile that captures

her willingness to pay based on her demand function given per-unit prices. Such reduction

allows us to provide a construction that converts any pricing-based mechanism for linear

agent to a pricing-based mechanism for non-linear agents with the same payoff guarantee

(Theorem 1).

Note that for non-linear agents (e.g., agents with budget constraints), not all mechanisms

can be interpreted as pricing-based mechanisms and, in fact, pricing-based mechanisms are

generally not optimal even in single-agent settings. Nonetheless, we introduce a reduction

framework to show that these mechanisms are approximately optimal for large families of

non-linear agents. For these families we say that the non-linear agents resemble linear

agents. Specifically, given a pricing-based mechanism that guarantees a β-approximation

(i.e., achieves at least 1/β fraction of the optimal objective) for linear agents and given

non-linear agents that are ζ-resemblant3 of linear agents and satisfy the von Neumann-

Morgenstern expected utility representation (Morgenstern and von Neumann, 1953), the

reduction framework shows that the analogous pricing-based mechanism for non-linear agents

guarantees a βζ-approximation to the optimal (Theorem 2). This reduction framework

is general – it can be applied to any downward-closed feasibility constraint (e.g., single-

item, multi-unit, matroid), many common objectives (e.g., revenue, welfare, or their convex

combination), and even for agents that do not satisfy expected utility representation (e.g.,

agents with endogenous valuation (Gershkov et al., 2021; Akbarpour et al., 2023)). See

Section 7 for a detailed discussion.

In the classical linear utility model of mechanism design, there are extensive studies of

simple mechanisms with various approximation guarantees. Approximation results allow

qualitative conclusions about drivers of good economic outcomes. Consider the examples of

selling m units of identical items to multiple heterogeneous buyers. Example 1: Bulow and

Roberts (1989) connects auction theory with classical microeconomics by showing that the

revenue optimal mechanism can be interpreted as allocating items to agents to maximize the

marginal revenue. Example 2: Yan (2011) shows that sequential posted pricing guarantees

at least 1 − 1√
2πm

of the optimal auction revenue, which indicates that simultaneity and

competition are not salient features for revenue maximization, especially in large markets

where m is sufficiently large. Example 3: Jin et al. (2021) show that the multiplicative loss

of posting an anonymous price can be as large as logm even when the agents’ valuation

distributions are regular. This implies that agents’ identities and the seller’s ability to price

3We measure the resemblance of agents in terms of the (topological) closeness of the single-agent revenue
curves, as defined in Bulow and Roberts (1989). We provide the details in the next subsection.
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discriminate the agents are crucial for revenue maximization. See the survey of Hartline

(2012) for detailed discussion of the method of approximation in economics.

Our reduction framework for non-linear agents allows us to observe not only that the main

drivers of good mechanisms are similar for non-linear agents, but also that non-linear utility

itself, in many of its forms, is not a main concern that necessitates specialized mechanism

designs. As an illustration, agents with public budgets and regular valuation distributions

are 1-resemblant of linear agents for revenue maximization, which implies that sequential

posted pricing guarantees at least 1− 1√
2πm

of the optimal revenue for such non-linear agents,

and simultaneous implementation and competition among agents are not salient features for

revenue maximization. Such conclusions cannot be derived through the classical approach

of analyzing the optimal mechanisms since the optimal mechanisms for non-linear agents

often depend on the details of the utility structures, and are too complex to admit simple

interpretations.

Among pricing-based mechanisms, the marginal revenue maximization mechanism is par-

ticularly noteworthy. This mechanism, which maximizes expected revenue across all pricing-

based alternatives, has been shown to be revenue optimal for linear agents (Bulow and

Roberts, 1989). When agents have non-linear utilities, while our reduction framework in-

dicates that this mechanism is approximately optimal, it is generally not exactly optimal.

However, in many practical applications, the exact Bayesian optimal mechanism may not be

implementable due to the principal’s limited access to exact utility functions or type distri-

butions of the agents. In often cases, the principal can only estimate the expected demands

of the agents using historical purchase data. We show that when the principal only knows

the expected demands, the marginal revenue maximization mechanism is robustly optimal,

i.e., it maximizes the minimum expected revenue where the minimum is taken over all pos-

sible utility functions and type distributions that are consistent with the expected demands

(Theorem 3). This robustness result suggests that when details of non-linear utilities are

unknown, the principal should refrain from customizing lotteries in pursuit of higher rev-

enue. Instead, treating agents akin to those with linear utilities and applying the optimal

pricing-based mechanism – marginal revenue maximization – is advisable.

1.1 Discussion of Our Results on ζ-Resemblance

To instantiate our reduction framework to illustrate the approximations of pricing-based

mechanisms for non-linear agents, we characterize broad families of non-linear agents that

are ζ-resemblant for small constant factors ζ (e.g., agents with independent private budgets,

or agents with risk aversion) and families that are not (e.g., agents whose budgets and values
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are correlated). For non-linear agents that are ζ-resemblant, pricing-based mechanisms are

approximately optimal if those mechanisms are approximately optimal for linear agents;

thus, non-linearity of utility can be viewed as a detail that can be omitted from the model

without significantly altering the main take-aways. On the other hand, with utility models

that are not ζ-resemblant for modest ζ, non-linearity is a crucial feature that needs specific

study for identifying forms of mechanisms lead to good economic outcomes.

The ζ-resemblance property that governs our reduction is based on a single-agent price-

posting approximation with ex ante supply constraints (c.f., Bulow and Roberts, 1989).

In particular, we say a non-linear agent is ζ-resemblant if given any ex ante allocation

constraint q ∈ [0, 1], the optimal payoff of the principal under the constraint that the ex

ante probability an item is sold to the agent is at most q, is at most ζ times the expected

payoff when restricting the mechanisms to posting (randomized) per-unit prices. For linear

agents, ζ = 1, i.e., the optimal mechanisms under any ex ante supply constraint can be

implemented as posting per-unit prices. For non-linear agents, a smaller parameter ζ results

in a better approximation of posted pricing in single-agent problems, making non-linear

agents more resemblant to linear agents. Note that it is essential to assume ζ-resemblance in

our reduction framework of pricing-based mechanisms, as single-agent problems with ex ante

supply constraints can be viewed as a specific case of multi-agent problems with symmetric

agents.

In our paper, we focus on the objective of revenue maximization and show that for

canonical non-linear utility models, parameter ζ is bounded by small constants. We also

discuss the extension for welfare maximization and their convex combination in Section 7.1.

Risk Averse Utility. It is standard to model risk averse utility as a concave function that

maps the agents’ wealth to utility. For revenue maximization problems, risk aversion intro-

duces a non-linearity into the incentive constraints of the agents which in most cases makes

mechanism design analytically intractable. We show that when the valuation distribution

satisfies the monotone hazard rate property, without any assumption on the risk preference

such as constant absolute risk aversion (CARA), a risk-averse agent is e-resemblant. Com-

bined with our reduction framework, this implies that the additional multiplicative loss in

approximation ratios for pricing based mechanisms is at most e when agents are risk averse.

Note that our bound is worst-case, and as illustrated in Section 3, for common valuation

distributions such as uniform distribution, the revenue loss of both marginal revenue maxi-

mization and sequential posted pricing are almost negligible when both the number of agents

and number of items for sale are large.

Budgeted Utility. We consider a setting where agents have hard budget constraints for
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paying the principal. That is, each agent’s utility is linear in payments if her payment is at

most her budget, and is minus infinity is her payment exceeds the budget. We show that if

the budgets are independent from the values, for regular valuation distributions,4 a public

budget agent is 1-resemblant and a private budget agent is 3-resemblant. This implies that

simple mechanisms such as sequential posted pricing are approximately optimal for agents

with independent budget distributions, and in particular when the budget is public, the worst

case approximation is attained when the budgets never bind, i.e., the agent behaves the same

as a linear agent. In contrast, when the values are correlated with budgets, the principal

can price discriminate the agents using their budget constraints, thereby achieving almost

full surplus in some cases. In those cases, posted pricing mechanisms are not approximately

optimal even in single-agent settings and such budgeted agent are not constant resemblant

to linear agents.

1.2 Related Work

Frameworks for reducing approximation for non-linear agents to approximation for linear

agents has also been studied in Alaei et al. (2013). Their reduction framework converts the

marginal revenue mechanism for linear agents to a mechanisms for non-linear agents and

general objectives. Unlike our framework which uses single-agent price-posting mechanisms

(induced from price-posting payoff curves) as a building-block, Alaei et al. (2013) convert

mechanisms for linear agents into mechanisms for non-linear agents with single-agent ex

ante optimal mechanisms (induced from optimal payoff curves) as components. From the

mechanism designer’s perspective, identifying ex ante optimal mechanisms for a single non-

linear agents can be much harder than identifying ex ante optimal price-posting mechanisms

(e.g., private budget utility, risk averse utility). Furthermore, due to this difference, the

implementation of the reduction framework together with its outcome mechanisms in Alaei

et al. (2013) is more complex than ours. In general, the framework in Alaei et al. (2013)

converts DSIC mechanisms for linear agents into Bayesian incentive compatible mechanisms

for non-linear agents.

The optimality of simple mechanisms in complex environments has also been established

in Carroll (2015, 2017); Brooks and Du (2021) and etc. The main intuition in that line of

work is that simple mechanisms are robustly optimal when the principal is ambiguity averse

and is not fully aware of the environment. In contrast, there is no ambiguity for the principal

in our model, and the optimal mechanisms can take complex forms. However, the principal

may still wish to adopt simple mechanisms in practice since their performances are close to

4A valuation distribution is regular if the virtual value v − 1−F (v)
f(v) is weakly increasing in v.
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optimal, and we also get robustness, e.g., to collusion with price posting. See Hartline and

Lucier (2015) for more discussions on the benefits of adopting simple mechanisms.

Mechanism design for non-linear agents are widely studied in the literature. In this work,

as applications of our general framework, we focus on two specific non-linear models, agents

with risk averse attitudes and agents with budget constraints.

Most results for agents with risk-averse utilities consider the comparative performance

of the first- and second-price auctions (cf., Holt Jr, 1980; Che and Gale, 2006). Matthews

(1983) and Maskin and Riley (1984), however, characterize the optimal mechanisms for

symmetric agents for constant absolute risk aversion and more general risk-averse models.

Baisa (2017) shows that the optimal mechanism for risk averse agents departs from the linear

agents, since the optimal mechanism does not allocate to the highest bidder, and can better

screen the agents through allocating the item to a group of agents with lotteries. Gershkov

et al. (2022) show that if the seller can make positive transfer to the agents, the optimal

mechanism features the property that under equilibrium, all agents face no uncertainty in

the realized utility.

Laffont and Robert (1996) and Maskin (2000) respectively study the revenue-maximization

and welfare-maximization problems for symmetric agents with public budgets in single-item

environments. Their results are generalized to i.i.d. values but asymmetric public budgets in

Boulatov and Severinov (2021) and to symmetric agents with uniformly distributed private

budgets in Pai and Vohra (2014). Che and Gale (2000) consider the single agent problem

with private budget and valuation distribution that satisfies declining marginal revenues,

and characterize the optimal mechanism by a differential equation. Devanur and Weinberg

(2017) provide an algorithmic solution to the same problem without distributional assump-

tions. Richter (2019) shows that a price-posting mechanism is optimal for selling a divisible

good to a continuum of agents with private budgets if their valuations are regular with

decreasing density. For more general settings, no closed-form characterizations are known.

However, the optimal mechanism can be solved by a polynomial-time solvable linear program

over interim allocation rules (cf., Alaei et al., 2012).

It is well known that simple mechanisms are approximately optimal for linear agents. For

single item auction with linear agents, Jin et al. (2019) show that the tight ratio between

anonymous pricing and the optimal mechanism is 2.62 under regularity assumption, and Yan

(2011) shows that the approximation ratio for sequential posted pricing is e/(e− 1).

For non-linear agents, given matroid environments, Chawla et al. (2011) show that a

simple lottery mechanism is a constant approximation to the optimal pointwise individually

rational mechanism for agents with monotone-hazard-rate valuations and private budgets.

In contrast, our approximation results are with respect to the optimal mechanism under
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interim individually rationality which can be arbitrarily larger than the benchmark from

Chawla et al. (2011).

2 Preliminaries

In this paper, we consider general payoff maximization for selling m units of identical items

to n non-linear agents where each agent has unit demand for the items. For example, welfare

maximization, revenue maximization and their convex combinations are special cases of

payoff maximization.

Agent Models. There is a set of agentsN where |N | = n. An agent’s utility model is defined

as (T , F̄, u) where T , F̄ , and u are the type space, type distribution and utility function. The

outcome for an agent is the distribution over the pair (x, p), where allocation x ∈ {0, 1} and

payment p ∈ R+. The utility function u of the player is a mapping from her private type and

the realized outcome to her von Neumann-Morgenstern expected utility for the outcome. In

this paper, we use subscript i to represent agent i in the multi-agent problems, and we will

drop the subscripts without ambiguity when we discuss the single-agent problems.

There are several specific utility models we are interested in this paper.

• Linear utility: The agent’s private type is her value v of the good. Given allocation

x and payment p, her utility is

u(v, x, p) = v · x− p.

• Non-linear utility: For agent with type t, her utility for allocation x and payment

p is u(t, x, p). In our general reduction framework for non-linear utilities, we do not

impose any specific structural properties on the utility function u. However, there are

several important special cases of non-linear utilities that we are interested in applying

our general framework to.

– Risk-averse utility: The agent’s type is a pair t = (v, φ) where v is the private

value and φ is an increasing and concave function that represents the agent’s risk

preference. We assume that φ(0) = 0. Given allocation x and payment p, her

utility is

u((v, φ), x, p) = φ(vx− p).

– Private-budget utility: The agent’s type is a pair t = (v, w) where v is the
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private value and w is the private budget constraint. Given allocation x and

payment p, her utility is

u((v, w), x, p) =

vx− p p ≤ w,

−∞ p > w.

Going forward, we use F to denote the marginal distribution over values for agents with

linear utilities, risk-averse utilities, or private-budget utilities.

Mechanisms. In this paper, we consider the sealed-bid mechanisms: in a mechanism

{(xi, pi)}i∈N , agents simultaneously submit sealed bids {bi}i∈N from their type spaces to

the mechanism, and each agent i gets allocation xi({bi}i∈N) with payment pi({bi}i∈N). The
outcome of mechanisms is a distribution π over the allocation payment pair (xi, pi) for each

agent i where the allocation is xi ∈ {0, 1} and the price is pi ∈ R+.
5 An allocation is feasible

if
∑

i xi ≤ m where m is the number of items.6

We consider mechanisms that satisfy Bayesian incentive compatible (BIC), i.e., no agent

can gain strictly higher expected utility than reporting her private type truthfully if all other

agents are reporting their private types truthfully, and interim individual rational (IIR), i.e.,

the expected utility is non-negative for all agents and all private types if all agents are

reporting their private types truthfully mechanisms. For later discussion, we also define

dominant strategy incentive compatible (DSIC) for a mechanism if no agent can gain strictly

higher expected utility than reporting her private type truthfully, regardless of other agents’

report. Note that DSIC coincides with BIC in single-agent environments.

Pricings. We also study mechanisms based on simple per-unit posted pricing.

Definition 2.1. Posting per-unit price p is offering a menu {(z, z · p) : z ∈ [0, 1]} to the

agent. The agent who chooses an option (z, z · p) receives an item with probability z, and

pays prices z · p regardless of the allocation.7

5Agents do not observe the realization of π before submitting their bids.
6In this paper, in order to simplify the exposition, we focus on the feasibility constraint where any

allocation is feasible as long as the total allocation does not exceed the supply of the seller. Our results can
be extended to multi-unit auctions with more general feasibility constraints. See Appendix A.6 for detailed
discussions.

7By revelation principle, given any utility function of the agent, any per-unit posted pricing mechanism
can also be transformed into a sealed-bid mechanism. In per-unit posted pricing mechanisms, the payment
format does not matter for linear agents, but it affects the incentives for non-linear agents. We focus on all-
pay format in this paper and show that simple mechanisms are approximately optimal under such payment
format. However, our general reduction framework can also be extended to other payment formats such as
winner-pays-all.
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Given per-unit price p, the demand of the agent with type t is

d(t, p) ∈ max
z∈[0,1]

z · u(t, 1, z · p) + (1− z) · u(t, 0, z · p).

For example, a budgeted agent with value v and budget w given per-unit price p will purchase

the lottery d = min{1, w/p} if v ≥ p, and purchase the lottery d = 0 otherwise. We assume

that utility of the agent is upper semi-continuous in chosen lottery z so that the demand

maximizing the utility can always be attained. Moreover, we assume that for any type t,

d(t, 0) = 1 and there exists p > 0 such that d(t, p) = 0.

Ordinary Goods. In this paper, our focus is on the sale of ordinary goods, where the

demand of the agent is non-increasing in the offered per-unit price. This assumption excludes

Giffen goods or Veblen goods and is satisfied by many common utility models, such as

budgeted utility or risk-averse utility.

Assumption 1. The item is the ordinary good, i.e., for any type t, the demand d(t, p) is

upper hemi-continuous, has convex image, and is weakly decreasing in p in strong set order.

In the special case where the optimal demand is unique, the ordinary good assumption

is equivalent to the assumption that the demand function is weakly decreasing in per-unit

price p.

Objectives. We assume that the seller is an expected utility maximizer. The seller’s payoff

function is a mapping from the type-outcome pair of each agent to a real value, and it is

additive and separable across different agents. That is, there exists payoff functions {Ψi}i∈N
such that given allocations {xi}i∈N and payments {pi}i∈N for type profile {ti}i∈N , the payoff
of the principal is

Ψ({ti}i∈N , {xi}i∈N , {pi}i∈N) =
∑
i

Ψi(ti, xi, pi).

A special case of the payoff function is the revenue, where Ψi(ti, xi, pi) = pi for any agent i.

3 Examples

In this section, we will focus on revenue maximization for selling m units of identical items to

n i.i.d. agents, where m < n. We first recap a simple mechanism, sequential posted pricing,

for linear agents. Then we illustrate how to extend sequential posted pricing to risk-averse

utilities and private-budget utilities, and show that it achieves revenue that is close to the

optimal under non-linear utilities through numerical calculations.
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Sequential Posted Pricing for Linear Agents. In sequential posted pricing mechanisms,

there is an order on agents such that the seller approaches them according to this given order.

When we restrict to the i.i.d. environments, the order on agents does not matter. Therefore,

without loss of generality, we assume that agents are approached by lexicographical order in

this section.

Given lexicographical order, there exists a sequence of per-unit prices {pi}i∈[n]. For each
agent i, the seller offers the agent price pi if the items have not been sold out to previous i−1

agents. Moreover, a linear agent i with value vi will purchase a unit of item with probability

1 if and only if her value is higher than the price.

3.1 Risk-averse Utility

We consider agents with risk-averse utilities. Recall that a risk-averse agent’s type is a pair

t = (v, φ). We first show that any risk-averse agent, when facing a per-unit price, will behave

the same as a linear agent.

Claim 1. For any risk-averse agent with type (v, φ) and for any per-unit price p, the expected

utility of the agent is maximized at allocation z ∈ {0, 1}.

Proof. Given any per-unit price p, agent’s expected utility with demand z is

z · φ(v − z · p) + (1− z) · u(−z · p) ≤ φ(z · (v − p))

since function φ is concave, and the equality holds when z ∈ {0, 1}. Moreover, since φ is

monotonically increasing and z · (v − p) is maximized when z is either 0 or 1, the expected

utility is maximized at allocation z ∈ {0, 1}.

In the remaining of this section, we focus on the simple example where each agent has

constant absolute risk aversion (CARA) utility function, i.e.,

φ(z) =
1

a
(1− exp (−az))

for risk parameter a > 0, where exp(·) is the exponential function.

Numerical Evaluations for Sequential Posted Pricing. We consider a risk averse agent

with value drawn from uniform distribution in [0, 1]. By Claim 1, a risk-averse agent behave

the same as a linear agent when facing a per-unit price and hence the risk attitude of the

agent does not matter under posted pricing. Therefore, we can apply the same sequential

posted pricing mechanism for risk-averse agents as the one for linear agents, and achieve the
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Figure 1: The above figure plot the revenue (normalized by the number of items m) as a
function of n

m
for both risk-averse agents and private-budget agents. The expected revenue

for sequential posted pricing is computed when m = 5 (thin solid line) and m = 20 (thin
dashed line). An upper bound of the optimal revenue through ex ante relaxation is illustrated
by the thick solid line. Note that this upper bound does not depend on the value of m.

same expected revenue as if all agents have linear utilities. In particular, we will numerically

evaluate the revenue of sequential posted pricing mechanism where the price of each agent is

set such that the probability each agent accepts the price is exactly min
{

m
n
, 1
2

}
, where 1

2
is

the probability the item is sold in the single-agent problem when the seller posts a monopoly

price of 1
2
to maximize the expected revenue for uniform distributions. For each risk-averse

agent i with value drawn from uniform distribution U [0, 1], the per-unit price pi she faces is

exactly 1−min
{

m
n
, 1
2

}
.

Note that in general computing the optimal revenue for risk-averse agents is challenging.

Therefore, in the comparison of revenues in Figure 1a, instead of plotting the optimal revenue,

we will plot an upper bound on the optimal revenue through the technique of ex ante

relaxation, which will be elaborated in Section 5. As illustrated in Figure 1a, the gap between

the expected revenue from sequential posted pricing and the upper bound of the optimal

revenue is small, especially when both n and m are large. For example, the multiplicative

revenue gap when n = 200 and m = 20 is less than 1.153.

3.2 Private-budget Utility

We now consider agents with private-budget utilities where the values are independent of

the budgets. This model is a generalization of the single-item setting studied in Che and

Gale (2000) for a single agent and in Pai and Vohra (2014) for multiple agents. In both

scenarios, the optimal mechanisms are complicated. In this section, we numerically evaluate

the approximation ratio of sequential posted pricing.
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Numerical Evaluations for Sequential Posted Pricing. We consider budget con-

strained agents whose value and budget are drawn independently from uniform distribution

in [0, 1]. For each agent i with a private budget, when offered a per-unit price pi, she may

purchase a lottery with probability strictly less than 1 in order to satisfy the budget con-

straint. In this case, we restrict attention to sequential posted pricing mechanisms realize

the lottery immediately before offering a price to the next agent.

For agents with private budgets, we will numerically evaluate the revenue of sequential

posted pricing mechanism where the per-unit price of each agent is set such that the proba-

bility each agent wins a unit of item is min{m
n
, 1+

√
3

6
}, where 1+

√
3

6
is the probability an item

is sold in the single-agent problem when the seller posts a per-unit price to maximize the

expected revenue. Therefore, the per-unit price for each budgeted agent i in this example is

pi =
1

2

(
3−

√
9− 8(1−min{m

n
, 1+

√
3

6
})
)
.

The revenue guarantees of sequential posted pricing are illustrated in Figure 1b. Again,

the plot for optimal revenue is replaced by its upper bound using ex ante relaxation. As

illustrated in Figure 1b, the gap between the expected revenue from sequential posted pricing

and the upper bound of the optimal revenue is small in all cases, especially when m is large.

For example, the multiplicative revenue gap when n = 200 and m = 20 is less than 1.095.

3.3 Discussions of Examples

In the preceding numerical calculations, we showed that in i.i.d. environments, the revenue of

sequential posted pricing mechanisms are approximately optimal for both risk-averse agents

and private-budget agents. Since we replaced the optimal revenue with an upper bound

derived through the ex ante relaxation, the actual gap between the optimal revenue and se-

quential posted pricing is even smaller compared to the illustration in Figure 1. In Section 5,

we will show that the expected payoffs from a broad family of simple mechanisms are close to

the optimal for general non-i.i.d. environments when agents have non-linear utilities. Note

that the analyses conducted in those sections are based on worst-case scenarios. The nu-

merical analyses provided in this section serve to underscore that, in practical scenarios, the

actual performance of these simple mechanisms can significantly outperform the worst-case

bounds, especially in large markets where both n and m are large.

In the construction of sequential posted pricing mechanisms for numerical evaluations, we

infer the price posted to each agent by determining the probability each agent will purchase

an item given the price. Intuitively, the probability an item is sold to each agent is more
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important than the value of per-unit prices in the sequential posted pricing mechanisms.

In particular, by controlling those probabilities, the items are not sold out with sufficiently

large probabilities, and thus the sequential posted pricing mechanism can extract sufficiently

high revenue from all agents regardless of the order of their arrival in the mechanism. In

Section 4, we will show that this feature of determining the price based on the probability

of sale is also a crucial ingredient for other simple mechanisms.

4 Implementation of Pricing-based Mechanisms

In this section we introduce the implementation of pricing-based mechanisms for both linear

agents and non-linear agents. Our construction relies on the definition of payoff curves, which

captures the optimal payoff in the single-agent problems with ex ante supply constraints.

4.1 Single-agent Payoff Curves and Resemblance

In this section, we analyze the single-agent problem with ex ante supply constraints. We

define the optimal payoff curves and price-posting payoff curves as follows, and we refer to

them as optimal revenue curves and price-posting revenue curves if the payoff function is the

revenue.

Definition 4.1. The optimal payoff curve R(q) is a mapping from any ex ante supply

constraint q to the optimal ex ante payoff for the single agent problem that in expectation

sells the item with probability q, i.e.,

R(q) = max
π is BIC, IIR

E(x,p)∼π[Et∼F̄ [Ψ(t, x(t), p(t))]]

s.t. E(x,p)∼π[Et∼F̄ [x(t)]] = q.

Lemma 1. The optimal payoff curve is concave.

This lemma is immediate since in this case the space of incentive compatible mechanisms

is closed under convex combination, and the payoff function is linear in the space of mech-

anisms. Next we define price-posting payoff curves based on mechanisms that post per-unit

prices.

Definition 4.2. The market clearing price pq for the ex ante supply constraint q is the

highest per-unit price at which there exists a demand function such that the expected demand

of the agent is q, i.e., Et∼F̄ [d(t, p
q)] = q.
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The existence of the market clearing price is implied by the assumption that the demand

correspondence is upper hemi-continuous and has convex image. Moreover, under the ordi-

nary goods assumption, there exists a demand function d(t, pq) which is weakly increasing

in q and satisfies the expected demand constraint for all q. We will focus on such selection

rules throughout the rest of the paper.

Definition 4.3. The price-posting payoff curve P (q) is the expected payoff from posting

market clearing price pq.

Price-posting payoff curves are not generally concave, and we can iron it to get the

concave hull of the price-posting payoff curves. Since the price-posting payoff curve is a

single-dimensional function, the ironed price-posting payoff curve P̄ can be obtained by

randomizing over at most two per-unit prices.

Definition 4.4. The ironed price-posting payoff curve P̄ is the concave hull of the price-

posting payoff curve P .

Next we review the relation between the optimal revenue curves and the concave hull of

the price-posting revenue curves for linear agents.

Lemma 2 (Bulow and Roberts, 1989). The optimal revenue curve R of a linear agent is

equal to her ironed price-posting revenue curve P̄ .

In general, for non-linear agents, the optimal payoff (e.g., revenue) curves and the ironed

price-posting payoff curves are not equivalent, and the mechanism maximizing the ex ante

payoff is more complicated and extracts strictly higher payoff than the optimal price posting

mechanism and randomizations over price posting mechanisms. We quantify the extent

to which a non-linear agent resembles a linear agent based on the maximum payoff gap

between posted pricing and optimal mechanisms in a single-agent environment with supply

constraints.

ζ-resemblance. We introduce ζ-resemblance of an agent to measure how her ironed price-

posting payoff curve resembles her optimal payoff curve. This definition is illustrated in

Figure 2. Note that based our definition, Lemma 2 implies that a linear agent is 1-resemblant.

Definition 4.5 (ζ-resemblance). An agent’s ironed price-posting payoff curve P̄ is ζ-resemblant

to her optimal payoff curve R, if for all q† ∈ [0, 1], there exists q ≤ q† such that P̄ (q) ≥
1/ζ ·R(q†). Such an agent is ζ-resemblant.

Our definition implies that for a ζ-resemblant agent, given any supply constraint q,

there exists a distribution over per-unit prices with expected sale probability at most q that
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R

P̄
R/ζ

Figure 2: The thin dashed curve is the optimal payoff curve scaled by a factor of ζ, and
the thick dashed curve is the monotone extension of the ironed price-posting payoff curve.
The definition of ζ resemblance is satisfied if the thick dashed curve is always above the thin
dashed line.

achieves at least 1
ζ
fraction of the optimal payoff. Note that in this definition, the seller

is allowed to not run out the supply q given price-posting mechanisms to approximate the

optimal payoff. This is equivalent to an environment of selling items to a continuum of

agents with supply constraints, where ζ-resemblance measures the worst-case gap (over all

possible supplies) between optimal mechanisms and posted pricing mechanisms for non-linear

agents. Since posted pricing mechanisms are optimal mechanisms for an linear agent, smaller

ζ implies that non-linear agents resemble linear agents better.

4.2 Pricing-based Mechanisms for Linear Agents

In Bayesian mechanism design, the taxation principle suggests that it is without loss to focus

on menu mechanisms: Fixing any agent, the mechanism offers a menu of outcomes (i.e., her

allocation and payment) to the agent, where the menu depends on other agents’ bids.

For non-linear agents, the menu offered in the Bayesian optimal mechanism often requires

complicated price discrimination schemes even in single-agent environments. For example,

to maximize the revenue from a single private-budget agent, the menu size of the optimal

mechanism is exponential in the size of the support of the budget distribution (Devanur and

Weinberg, 2017).

Among all menu mechanisms, there is a subclass of mechanisms closely related to price

posting which allow simple implementations – pricing-based mechanisms. The subclass of

pricing-based mechanisms considers mechanisms where the menu (offered by the mechanism

to each agent) is equivalent to posting a per-unit price. For linear agents, it is well known

that there exist pricing-based mechanisms that are optimal (approximately optimal) in multi-

agent environments (Myerson, 1981; Riley and Zeckhauser, 1983; Yan, 2011; Alaei et al.,

2019). Our reduction framework (Theorem 2) in the next section will show that when

non-linear agents have small resemblances, by focusing on simple menus mechanisms, i.e.,
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pricing-based mechanisms, the payoff losses due to the non-linearity in utilities are not large.

We first introduce the concept of quantiles and then describe the pricing-based mecha-

nisms for linear agents in quantile space.

Quantiles for Linear Agents. For agents with linear utilities, the quantile of value v

given value distribution F is defined as

q(v) ∈
[
Pr
z∼F

[z ≥ v], Pr
z∼F

[z > v]
]
,

where quantile q(v) is drawn uniform randomly if the above interval is not degenerate.

Conversely, the value corresponding to quantile q̂ is v(q̂) ≜ supz{q(z) ≥ q̂}. Note that

for any distribution F over value v, the marginal distribution over quantile q is a uniform

distribution between [0, 1].

Based on this mapping for linear agents, any mechanism in the value space can be

equivalently converted to a mechanism in the quantile space, and vice versa. Moreover,

for linear agents, the price-posting payoff curve P (q) is attained by selling to agents with

quantiles below q. Therefore, without ambiguity, we also refer to P (q) as the price-posting

payoff for quantile q.

Pricing-based Mechanisms for Linear Agents. For linear agents, every determinis-

tic, dominant strategy incentive compatible (DSIC) and interim individual rational (IIR)

mechanism (e.g., the Bayesian optimal mechanism) can be implemented as a pricing-based

mechanism (Alaei et al., 2013) in the value space.8 Based on our definition of quantiles for

linear agents, the pricing-based mechanism for linear agents in quantile space is defined as

follows:

- each agent i’s reported value vi is mapped to quantile qi;

- there is a threshold function Qi(q−i) for each agent i such that agent i is offered with

a per-unit price pQi(q−i) where q−i ≜ {qj}j∈N\{i}. Agent i receives an item if and only

if qi ≤ Qi(q−i).
9

Essentially, Qi(q−i) is the threshold on allocation in the quantile space. In Section 5.1, we

illustrate how to describe the Bayesian optimal mechanism and sequential posted pricing

8Note that for linear agents, any BIC and IIR mechanism can be converted to a DSIC and IIR mechanism
(Gershkov et al., 2013), and any randomized mechanism can be converted to a deterministic mechanism
through purification (Chen et al., 2019) when type distributions are continuous.

9It is possible that in pricing-based mechanisms for linear agents, based on the tie breaking rules, agent
i receives an item only if qi < Qi(q−i) for some q−i. In this case, by slightly abusing the notation, we allow
Qi(q−i) to take values such as z+ for z ∈ [0, 1], and we say qi ≤ z+ if and only if qi < z.
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mechanisms as pricing-based mechanisms by explicitly defining the corresponding threshold

functions {Qi}.
Since the distribution over quantiles is a uniform distribution in [0, 1] regardless of the

valuation distribution, the expected payoff of the pricing-based mechanismM with threshold

functions {Qi}i∈N is uniquely pinned down by the price-posting payoff curves {Pi}i∈N as

M({Pi}i∈N) = E{qi}i∈N∼U [0,1]n

[∑
i∈N

Pi(Qi(q−i))

]
.

4.3 Pricing-Based Mechanisms for Non-linear Agents

For linear agents, the implementation of pricing-based mechanisms in the quantile space

is intuitive since higher values are mapped to lower quantiles according to the cumulative

distribution function of the valuation distribution. However, the construction of quantiles

for non-linear agents is not obviously since the private types of non-linear agents can be

multi-dimensional and there may not exist a natural single-dimensional order on the types

that captures the agents’ preference for all distributions over outcomes. In this section, we

introduce a definition of quantiles for non-linear agents based on their demands given market

clearing prices under different supplies.

Quantiles for Non-linear Agents. For a non-linear agent with type t, define function

H t(q) = d(t, pq) where d(t, pq) is the demand of type t under market clearing price pq that

sells the item to the agent with probability q. Under the ordinary goods assumption, we

can focus on selection rules such that the demand d(t, pq) is weakly increasing in q, which

implies that function H t(q) is weakly increasing in q for all type t.10 Moreover, H t(0) = 0

and H t(1) = 1, and thus H t can be viewed as a distribution supported on [0, 1] with H t(q)

being the cumulative distribution function for any type t.

Definition 4.6 (quantiles). For any non-linear agent with type t and demand function d(t, ·),
the randomized quantile q for type t is drawn from distribution H t with H t(q) ≜ d(t, pq).

Our definition of quantiles for non-linear agents maps the potentially multi-dimensional

types of non-linear agents into single-dimensional quantiles based on the demand functions.11

Moreover, given any market clearing price, types with higher demands are mapped to lower

10For different selection of demand function d(t, pq), the defined function Ht(q) may be different for any
given t and q. However, our general reduction framework and approximation results in the paper hold for
all selection rules.

11Note that the definition of quantile for non-linear agents encompasses the definition for linear agents. In
particular, for an linear agent with value v(q), the distribution Hv(q) is a point-mass distribution at q.

18



Algorithm 1: Pricing-based Mechanisms for Non-linear Agents

Input: Non-linear agents {(Ti, F̄i, ui)}i∈N ; and a pricing-based mechanism M with
threshold function {Q}i∈N on quantiles.

1 For each agent i with private type ti, map the type to a random quantile qi
according to cumulative distribution function H ti

i (·).
2 For each agent i, calculate quantile threshold as q̂i = Qi(q−i).

3 For each agent i, her allocation is xi = 1 if qi ≤ q̂i and xi = 0 otherwise. The
payment of agent i is pi = pq̂i · d(ti, pq̂i) regardless of the allocation.12

quantiles with higher probabilities, and hence is more likely to win an item in pricing-based

mechanisms where items are allocated based on the thresholds in the quantile space.

Another benefit of our definition of quantiles for non-linear agents is that the marginal

distribution over quantiles is invariant of the utility models of the agents or the type distribu-

tions. Specifically, for any non-linear agent, the cumulative distribution function of quantile

q is

Prt∼F̄,q∼Ht [q ≤ z] = Et∼F̄

[
H t(z)

]
= Et∼F̄ [d(t, p

z)] = z

where the last inequality holds due to the definition of the market clearing price pz. Therefore,

for any non-linear agent, over the randomness of her private type, the marginal distribution

over quantile q is also drawn from uniform distribution U [0, 1].

Pricing-based Mechanisms for Non-linear Agents. Given the definition of quantiles

for non-linear agents, we define the pricing-based mechanisms for non-linear agents in Algo-

rithm 1, which first maps the types of all agents into quantiles based on Definition 4.6, and

allocates items to agents based on thresholds in the quantile space.

Theorem 1 (Implementation). For any non-linear agents with price-posting payoff curves

{Pi}i∈N , the pricing-based mechanism M with threshold functions {Qi}i∈N defined in Algo-

rithm 1 is DSIC and IIR for non-linear agents, and its expected payoff is

M({Pi}i∈N) = E{qi}i∈N∼U [0,1]n

[∑
i∈N

Pi(Qi(q−i))

]
.

Theorem 1 implies that for any set of linear agents and non-linear agents with the same

price-posting payoff curves {Pi}i∈N , given any pricing-based mechanism M for linear agents,

12To simplify the exposition, we only state the payment rules without the consideration of the tie-breaking
rules in the pricing-based mechanism for linear agents. The details for constructing consistent tie-breaking
rules are explained in Appendix C.
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there exists a pricing based mechanism for non-linear agents with the same allocation rule

in the quantile space that guarantees the same expected payoff. Therefore, we can use

M({Pi}i∈N) to represent the expected payoff of pricing-based mechanism M defined in

the quantile space given price-posting payoff curves {Pi}i∈N without the consideration of

the detailed utility models of the agents. The proof of Theorem 1 relies on the following

alternative interpretation of Algorithm 1.

Price-posting Equivalence Interpretation. For agent i with type ti, conditioning on

threshold q̂i = Qi(q−i) which only depends on other agents’ types, her expected allocation

over the randomness of her quantile qi is

E[1[qi ≤ q̂i] | q̂i, ti] = H ti
i (q̂i) = d(ti, p

q̂i)

and her payment is deterministically pq̂i ·d(ti, pq̂i). Therefore, from the perspective of agent i,

the constructed mechanism is equivalent to offering a per-unit price pq̂i where threshold

quantile q̂i only depends on other agents’ types.

Proof of Theorem 1. Both DSIC and IIR of mechanism M are immediately guaranteed from

the price-posting equivalence interpretation. Moreover, for any non-linear agent i, condi-

tional on the event that her threshold quantile is q̂i = Qi(q−i), the expected payoff from

agent i in this event is Pi(q̂i). Therefore, by linearity of expectation, the expected payoff of

mechanism M is

M({Pi}i∈N) = Eq∼U [0,1]n

[∑
i∈N

Pi(Qi(q−i))

]
(1)

since the marginal distribution over quantile qi is drawn from uniform distribution U [0, 1]

for all agent i.

5 Reduction Framework and Approximation Guaran-

tees

We provide a reduction framework that extends the approximation bounds of pricing-based

mechanisms for linear agents to non-linear agents. An important application of our general

reduction framework is that the Bayesian optimal mechanism for linear agents proposed in

Bulow and Roberts (1989) can be extended with approximately optimal performance for

non-linear agents.

The reduction framework in this section relies on the following technique of ex ante

relaxation for bounding the optimal payoff of the principal.
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Ex Ante Relaxation. In general for non-linear agents, it is challenging to characterize the

optimal mechanism and quantify the optimal payoff of the principal. Thus, we introduce the

benchmark of ex ante relaxation, which serves as an upper bound of the optimal payoff. For

selling m units of identical items, a sequence of ex ante quantiles {qi}i∈N is ex ante feasible

if
∑

i qi ≤ m. We denote the set of ex ante feasible quantiles by EAF. The optimal ex ante

payoff given a specific collection of optimal payoff curves {Ri}i∈N is

EAR({Ri}i∈N) = max
{qi}i∈N∈EAF

∑
i∈N

Ri(qi).

Note that EAR({Ri}i∈N) is an upper bound on the optimal payoff since any feasible mech-

anism must satisfy the ex ante feasibility constraints, and the ex ante payoff optimizes the

principal’s expected payoff under such constraints. Moreover, the ex ante payoff is uniquely

determined by the optimal payoff curves regardless of the detailed utility models of the

agents.

Reduction of Approximation Guarantees. Now we present the following theorem:

a reduction framework that extends the approximation guarantees of every pricing-based

mechanism for linear agents to non-linear agents.

Theorem 2 (Reduction Framework). For any pricing-based mechanism M and any set of

non-linear agents with price-posting payoff curves {Pi}i∈N and optimal payoff curves {Ri}i∈N ,
if

• mechanism M is a γ-approximation for linear agents, i.e., M({Pi}i∈N) ≥ 1/γ·EAR({P̄i}i∈N);
and

• all non-linear agents are ζ-resemblant;

then mechanism M for non-linear agents is a γ ζ-approximation to the ex ante relaxation,

i.e., M({Pi}i∈N) ≥ 1/γ ζ · EAR({Ri}i∈N).

Before the proof of Theorem 2, we first explain the conditions in Theorem 2, and in

particular why we refer to condition M({Pi}i∈N) ≥ 1/γ ·EAR({P̄i}i∈N) as the approximation

guarantees for linear agents.

Note that for both pricing-based mechanism M and the ex ante relaxation, the expected

payoff of the principal only depends on the price-posting payoff curves and optimal payoff

curves respectively, not on the details of the utility models. Therefore, for any set A of

non-linear agents with price-posting payoff curves {Pi}i∈N , we can define a linear agents
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analog as a set AL of agents with the same price-posting payoff curves.13 By Theorem 1,

the expected payoffs of mechanism M are the same for both non-linear agents A and the

linear agents analog AL, which equals M({Pi}i∈N) defined in Equation (1). Moreover, by

Lemma 2, the optimal payoff curves for the linear agents analog are {P̄i}i∈N , and hence

the optimal ex ante payoff for the linear agents analog is EAR({P̄i}i∈N). Therefore, the

condition that M({Pi}i∈N) ≥ 1/γ · EAR({P̄i}i∈N) can be interpreted as the approximation

ratio of pricing-based mechanism M for the linear agents analog when compared to its ex

ante relaxation. This condition is necessary for our reduction framework since linear utility

is a special case of non-linear utilities.

Another condition in Theorem 2 is the requirement that all non-linear agents are ζ-

resemblant. This condition is also necessary for pricing-based mechanisms to be approx-

imately optimal for non-linear agents. This is because without this assumption, even in

single-agent environments with supply constraints, there exists mechanisms with more com-

plicated price discrimination schemes that significantly outperforms simple pricing-based

mechanisms.

Proof of Theorem 2. Given the assumption that pricing-based mechanism M is approxi-

mately optimal for linear agents, i.e., M({Pi}i∈N) ≥ 1/γ · EAR({P̄i}i∈N), it is sufficient to

show that EAR({P̄i}i∈N) ≥ 1/ζ ·EAR({Ri}i∈N) when all non-linear agents are ζ-resemblant.

Let {q†i }i∈N ∈ EAF be the profile of optimal ex ante quantiles for optimal payoff curves

{Ri}i∈N . Since the ironed price-posting payoff curves {P̄i}i∈N are ζ-resemblant to the optimal

payoff curves {Ri}i∈N , there exists a sequence of quantiles {qi}i∈N such that for any agent

i, qi ≤ q†i and P̄ (qi) ≥ 1/ζ ·R(q†i ). Note that {qi}i∈N is also ex ante feasible. Therefore,

EAR({Ri}i∈N) =
∑
i∈N

Ri(q
†
i ) ≤ ζ ·

∑
i∈N

P̄i(qi) ≤ ζ · EAR({P̄i}i∈N).

5.1 Application of Reduction Framework

In this section, we will mainly focus on the application of two simple mechanisms, marginal

revenue maximization and sequential posted pricing.

13For payoff functions such as the revenue, the linear agents analog is well defined since the price-posting

revenue curve P (q) of a linear agent uniquely pins down her valuation distribution as v(q) = P (q)
q . For

general payoff function, given the price-posting payoff curves {Pi}i∈N of the non-linear agents, there may not
exist type distributions for linear agents such that their price-posting payoff curves coincide with {Pi}i∈N .
However, both the payoffs for sequential posted pricing mechanisms and the ex ante relaxation are well
defined given the payoff curves, and Theorem 2 holds for payoff curves that does not correspond to any type
distributions of the linear agents. Hence, we can refer to the linear agents analog even without the existence
of the underlying type distributions.
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Sequential Posted Pricing. We first introduce the formal definition of sequential posted

pricing mechanisms in quantile space. This definition applies to both linear agents and

non-linear agents.

Definition 5.1. A sequential posted pricing mechanism is parameterized by

({ôi}i∈N , {q̂i}i∈N) where {ôi}i∈N denotes an order of the agents and {q̂i}i∈N denotes

the quantile corresponding to the per-unit prices to be offered to agents if the items are not

sold out to previous agents.14

In sequential posted pricing, agents are approached according to order {qi}i∈N and receive

options to purchase the item given personalized prices. In Appendix A.5, we discuss the

extension of oblivious posted pricing where the seller only designs the personalized prices

and the agents can arrive in arbitrary order.

Remark 5.2. Every sequential posted pricing mechanism M = ({ôi}i∈N , {q̂i}i∈N) can be

described as a pricing-based mechanism with threshold functions {Qi}i∈N , where Qi(q−i) =

q̂i ·
∏

j:ôj<ôi
1[qj > q̂j].

Note that according to Definition 5.1, the payoff of sequential posted pricing mechanism

is uniquely determined by the price-posting payoff curves {Pi}i∈N of the agents. Therefore,

we denote SPP({Pi}i∈N) as the optimal payoff among the class of sequential posted pricing

mechanisms.

Yan (2011) showed that the worst-case approximation factor of sequential posted pricing

to the ex ante payoff is at most 1/(1− 1√
2πm

) for selling m units to linear agents. Combining

this with Theorem 2, we obtain the following corollary.

Corollary 1. For selling m units of identical items to any set of non-linear agents with price-

posting payoff curves {Pi}i∈N that are ζ-resemblant to their optimal payoff curves {Ri}i∈N ,
sequential posted pricing is a ζ/(1− 1√

2πm
)-approximation to the ex ante relaxation for non-

linear agents, i.e., SPP({Pi}i∈N) ≥ 1
ζ
· (1− 1√

2πm
) · EAR({Ri}i∈N).

Note that in the approximation factor, the term 1 − 1√
2πm

converges to 1 in the large

market where m increases to infinity. The term ζ measures how close the non-linear agents

resembles linear agents, and the approximation factor becomes better when non-linear agents

become more resemblant to linear agents. Corollary 1 implies that the approximation ratio

will be close to 1 in large markets for non-linear agents that closely resembles linear agents.

This implies that sequential posted pricing are approximately optimal for those non-linear

14In the sequential posted pricing mechanism, each agent may only get a lottery for winning the item. We
assume that the lottery is realized immediately after each agent’s purchase decision.
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agents. The interpretation is that competition and simultaneous implementation are not

salient features for payoff maximization even when agents have non-linear utilities.

Marginal Payoff Maximization. Bulow and Roberts (1989) introduce the marginal

revenue maximization mechanism and show its revenue-optimality for linear agents. The

marginal revenue maximization mechanism can be easily extended to other payoff objectives

and we denote its extensions as the marginal payoff maximization mechanisms (MPM). For-

mally, the marginal payoff maximization mechanism is defined as the one with allocations

that maximize the total marginal payoff∑
i∈N

xi · P ′
i (qi)

for any profile of quantiles {qi}i∈N .15 Note that the expected payoff of the marginal payoff

maximization mechanisms only depend on the payoff curves, not the detailed utility struc-

tures of the agent. Therefore, we denote the payoff of MPM for agents with price-posting

payoff curves {Pi}i∈N as MPM({Pi}i∈N).

Remark 5.3. The marginal payoff mechanism can be described as a pricing-based mechanism

with threshold functions {Qi}i∈N , where Qi(q−i) = (P ′
i )

(−1)(maxj ̸=i P
′
j(qj)) and (P ′

i )
(−1)(·) is

the inverse function of P ′
i (·).

For non-linear agents, although the marginal payoff maximization mechanism is no longer

optimal in general, by adopting the same argument as in Bulow and Roberts (1989), it is

optimal among the subclass of pricing-based mechanism for any given set of payoff curves.

Moreover, our reduction framework shows that it is approximately optimal for non-linear

agents that resemble linear agents. Again by Yan (2011), the worst-case approximation

factor of marginal payoff maximization to the ex ante payoff is at most 1/(1− 1√
2πm

) for selling

m units to linear agents. Combining this with Theorem 2, we obtain the following corollary.

Corollary 2. For selling m units of identical items to any set of non-linear agents with price-

posting payoff curves {Pi}i∈N that are ζ-resemblant to their optimal payoff curves {Ri}i∈N ,
marginal payoff maximization is a ζ/(1− 1√

2πm
)-approximation to the ex ante relaxation for

non-linear agents, i.e., MPM({Pi}i∈N) ≥ 1
ζ
· (1− 1√

2πm
) · EAR({Ri}i∈N).

Note that although the worst-case approximation guarantee of the marginal payoff maxi-

mization mechanism coincides with sequential posted pricing when compared to the ex ante

15In the case that Pi(qi) is not concave in qi and hence P ′
i (qi) is not monotone in qi, we can apply

the ironing trick in Myerson (1981) by considering allocations that maximize the ironed marginal payoff∑
i∈N xi · P̄ ′

i (qi).
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relaxation, the expected payoff from marginal payoff maximization always weakly exceeds

the the expected payoff from sequential posted pricing.

Since the demands of risk-averse agents given per-unit prices do not depend on their

risk preferences, the implementation of the marginal payoff maximization mechanisms for

risk-averse agents coincides with that for linear agents. For example, when all agents have

i.i.d. marginal valuation distributions, the marginal payoff maximization mechanism for risk-

averse agents can be implemented as the VCG mechanism with an anonymous reserve price

for all agents.

In general for non-linear agents such as private-budgeted agents, the implementation

of the marginal payoff maximization mechanism (Algorithm 1) differs from that for linear

agents. For example, when agents have budget constraints, both the allocation and payment

of each agent may be randomized function of the opponents’ bids in order for the marginal

payoff maximization mechanisms to be budget feasible.

5.2 Resemblance of Revenue Maximization

In the previous section, we have provided a framework showing that pricing-based mech-

anisms are approximately optimal if the payoff curves of non-linear agents satisfy the re-

semblance property. This framework only has a bite if we can show that the resemblance

property is indeed satisfied for canonical non-linear utilities. In this section, we show that for

the objective of revenue maximization, both risk-averse agents and private-budget agents re-

semble linear agents under mild assumptions of the valuation distributions. In Appendix B.2,

we show that those assumptions are necessary for pricing-based mechanisms to be approxi-

mately optimal even in single-agent settings without sale constraints. Since we will focus on

the single-agent analysis in this section, we will drop the subscript representing the agent in

all notations.

5.2.1 Risk-averse Agent

For a risk-averse agent, her private type is represented by a pair t = (v, φ) where v is

the private value for the item and φ represents the agent’s risk preference. Note that we

allow arbitrary correlations between the values and risk preferences, and we do not impose

structures on the risk preferences such as CARA utilities.

Recall that F is the marginal distribution over values. We assume that distribution F

satisfies the monotone hazard rate (MHR) condition. This condition is satisfied by many

common distributions in practice such as such as uniform, exponential, and Gaussian distri-

butions.
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Definition 5.4. A distribution F with density function f satisfies monotone hazard rate

(MHR) condition if the hazard rate function h(v) ≜ f(v)
1−F (v)

is non-decreasing in v.

Essentially, Definition 5.4 implies that the tail probabilities in the valuation distribution

is small, i.e., small than the exponential distribution (see, e.g., Allouah and Besbes, 2018).

Proposition 1. A risk-averse agent is e-resemblant if her marginal value distribution sat-

isfies MHR condition.

The formal proof of the proposition can be found in Appendix B.1. At a high level, the

proof consists of a two-step argument. First, we argue that for every mechanism, its expected

revenue is upperbounded by the expected allocated value due to the individual rationality

constraint. One of the main technical challenges for analyzing risk-averse agents is that the

revenue-optimal mechanism is hard to characterize even for a single agent under specific

structures such as CARA. Thanks to the first step, we bypass this challenge since it now

suffices to compare the optimal expected allocated value achieved among all mechanisms

with the optimal expected revenue among posted pricing mechanisms, in which we prove the

gap is at most e under the MHR condition.

5.2.2 Budgeted Agent

For a private-budgeted agent, her private type is represented by a pair t = (v, w) where v

is the private value for the item and w represents the agent’s private budget constraint. In

contrast to the previous resemblance analysis for risk-averse agents, where arbitrary corre-

lations between values and risk preferences are allowed, here we make the assumption that

values and budgets are independent.

Intuitively, when values and budgets are correlated, especially if values are negatively cor-

related with budgets, imposing a high payment with a small probability for low-value types

would lead to high-value agents with low budgets being unable to select this option due to

budget constraints. As a result, the information rent of the agents becomes almost negligi-

ble, and the optimal mechanism can extract revenue close to the full surplus in such cases.16

However, such extreme price discrimination and full surplus extraction due to correlation

structures are rarely observed in many practical applications relevant to agents with budgets.

Thus, in this section, we focus on cases where the budget distribution is independent of the

valuation distribution for private-budget agents.

In addition to the independence assumption, we also impose the standard regularity

condition on the marginal value distribution F over values. This condition is weaker than

16We formalize this intuition with Example B.1 in Appendix B.2.
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the MHR condition and is satisfied by many common distributions in practice, such as

uniform, exponential, and Gaussian distributions.

Definition 5.5. A distribution F with density function f is regular if the virtual value

function ϕ(v) ≜ v − 1−F (v)
f(v)

is non-decreasing in v.

Public Budget. We first consider a simpler setting in which agents have determinis-

tic public budgets. This situation can be seen as a special case of private-budget agents,

where we consider a point-mass budget distribution. As a sanity check, the independence

assumption holds for public-budget agents.

Proposition 2. A public-budget agent is 1-resemblant if her marginal value distribution is

regular.

The proof of Proposition 2 relies on the technique of Lagrangian relaxation on the budget

constraint developed in Alaei et al. (2013) and Feng and Hartline (2018), which is deferred

to Appendix B.3. Combined with our reduction framework in Theorem 2, the interpretation

of Proposition 2 is that for public-budget agents with regular marginal value distributions,

the worst-case approximation ratio of pricing-based mechanisms to the ex ante relaxation

occurs when the public budgets do not bind.

In Appendix B.3, we also show that the regularity assumption is not essential for approx-

imation. That is, without the assumption of regular valuation distribution, a public-budget

agent is still 2-resemblant.

Private Budget. In this section, we present the resemblance for private-budget agents.

Proposition 3. A private-budget agent is 3-resemblant if her value and budget are indepen-

dently distributed, and her marginal value distribution is regular.

The formal proof of the proposition can be found in Appendix B.4. At a high level,

the proof consists of a two-step argument. First, we argue that every incentive compatible

mechanism for a single private-budget agent can be interpreted as a non-linear pricing scheme

τ , in which the agent chooses a lottery with winning probability z and pays τ(z). As a

sanity check, posting a per-unit price p is a special case of non-linear pricing schemes with

τ(z) = z · p. Intuitively, compared with general non-linear pricing schemes, the revenue loss

of posting per-unit price p has two components: (i) it does not serve agents with values below

p, and (ii) it does not apply price discrimination for agents with values above p. The second

step of our argument introduces a decomposition of the ex ante optimal mechanism and

shows that the revenue losses from both components are bounded within constant factors
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of the expected revenue from posted pricing given the independence assumption and the

regularity assumption on the marginal value distributions.

We also obtain a constant upper bound on the resemblance property with mild assump-

tion only on the marginal budget distribution. The details of this extension are provided in

Appendix B.5.

6 Robust Optimality

In preceding sections, we showed that simple mechanisms such as marginal revenue maxi-

mization are approximately optimal for a wide range of non-linear utility functions. This

section focus on a robust setting wherein the seller possesses only the knowledge of the buy-

ers’ demand functions, lacking detailed information regarding the non-linear utility function

or the type distribution. We show that the marginal revenue maximization mechanism is

robustly optimal under such environments.

Given any expected demand function d(p) that is a non-increasing function,17 let P(d)

be the set of feasible agent utility model (T , F̄, u) such that for any p ≥ 0,

d(p) = Et∼F̄ [d
u(t, p)]

where du(t, p) is the demand function induced by utility function u.

For any mechanism M, let M(
{
(Ti, F̄i, ui)

}
i∈N) be the expected revenue of mechanism

M given a profile of utility models
{
(Ti, F̄i, ui)

}
i∈N . In this section, we assume that the

seller can only observe the expected demand function di(p) for all agent i without knowing

the detailed utility models (Ti, F̄i, ui). The justification is that the detailed utility models are

often hard to estimate based on the historical purchase data from consumers for practical

applications. However, it is relatively easier to estimate the demand functions based on

posted pricing.

When the seller is ignorant of the detailed utility models, the objective of the seller is to

maximize the expected revenue over the worst case utility models that are consistent with

the observed demand functions. That is, the seller chooses a mechanism M to maximize

min
(Ti,F̄i,ui)∈P(di),∀i∈N

M(
{
(Ti, F̄i, ui)

}
i∈N).

Theorem 3. For any profile of non-increasing expected demand functions {di}i∈N , if the

seller does not observe the detailed profile of utility models, the marginal revenue maximiza-

17We focus on non-increasing demand functions since it is without loss under the ordinary good assumption.
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tion mechanism is the max-min revenue optimal mechanism, i.e.,

MPM ∈ argmax
M

min
(Ti,F̄i,ui)∈P(di),∀i∈N

M(
{
(Ti, F̄i, ui)

}
i∈N).

The interpretation of the robustness result is that if the seller is uncertain about the

detailed utility models, the seller should not resort to complex lottery mechanisms to price

discriminate the agents.

Note that in the robust environments, the seller does not know the detailed utility model.

Therefore, to implement the marginal revenue maximization mechanism, we cannot directly

apply the revelation principal to simply ask the agent to report her true type. Instead, we

ask the agent to report her demand function given her private type and her utility function.

For any agent i ∈ N , let Pi be the price posting revenue curve given demand function di.

By the construction in Section 4, the expected revenue of marginal revenue maximization

mechanism is

MPM({Pi}i∈N) = max
pricing-based mechanism M†

M†({Pi}i∈N)

regardless of the underlying utility model. Moreover, given any non-decreasing demand

function di, there exists a linear utility model (Ti, F̄i, ui) with Ti = R, ui(t, x, p) = t · x − p

such that (Ti, F̄i, ui) ∈ P(di). Moreover, for agents with linear utilities, the revenue optimal

mechanism is marginal revenue maximization even when the seller knows the detailed utility

model. Therefore, for any mechanism M, we have

min
(Ti,F̄i,ui)∈P(di),∀i∈N

M(
{
(Ti, F̄i, ui)

}
i∈N) ≤ max

pricing-based mech. M†
M†({Pi}i∈N) = MPM({Pi}i∈N).

Combining the inequalities, Theorem 3 holds.

7 Conclusions and Extensions

This paper provides a general framework for generalizing results from linear agents to non-

linear agents. The reduction framework relies on a novel resemblance property which charac-

terizes the gap between optimal mechanism and posted pricing for the single agent problem

with supply constraints. As the instantiations of the framework, we analyze the approxi-

mation bound for various mechanisms for various non-linear utility model (i.e., risk averse

utility, budgeted utility) under the objective of both revenue-maximization. Moreover, the

reduction framework allows us to show that the marginal revenue maximization mechanism
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is robustly optimal when the seller only observes the expected demand function of each

agent. Next we discuss several important extensions of our framework.

7.1 Resemblance for General Payoff Functions

In this section, we show that our framework applies broadly beyond revenue maximization,

e.g., welfare maximization or the convex combination of welfare and revenue maximization.

For the objective of welfare maximization, the VCG mechanism achieves the optimal wel-

fare for linear agents. However, for non-linear agents, VCG style mechanisms may not exist

and the optimal mechanisms for welfare maximization may be very complex. For example,

for agents with public budget constraints, (Maskin, 2000) show that the welfare-optimal

mechanism takes the form of an all-pay auction for symmetric agents, and Feng and Hart-

line (2018) further show that this mechanism cannot be implemented as a DSIC mechanism.

However, by showing that budgeted agents resemble linear agents for the welfare, there ex-

ists simple pricing based mechanisms, which are DSIC for agents with budget constraints,

that are approximately optimal for welfare maximization even when agents have private

budget constraints and when agents are asymmetric in ex ante. The proof of the following

proposition is provided in Appendix A.1.

Proposition 4. An agent with private budget has the price-posting welfare curve P that is

2-resemblant to her optimal welfare curve R if the budget is drawn independently from the

valuation.

For more complex payoff functions such as the convex combination of welfare and revenue

maximization, we can extend our previous results to show that if an agent resemble linear

agents for both welfare maximization and revenue maximization, then this agent resemble

linear agents for any convex combination of the two objectives. This observation relies on

the following lemma, with proof provided in Appendix A.2.

Lemma 3. If an agent is ζ-resemblant for objective 1 and ζ ′-resemblant for objective 2 with

non-negative values, then this agent is (ζ+ ζ ′)-resemblant for any convex combination of the

two objectives.

7.2 Heterogeneous Utility Models

Our resemblant definitions are monotonic, formalized in the subsequent lemma. With this

observation, our framework can be applied to environments with heterogeneous utility func-

tions. For example, suppose some of the agents have private budget constraints and some of
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the agents are risk averse. If each agent i ∈ N is ζi-resemblant, sequential posted pricing for

these agents is a e
e−1

·maxi{ζi}-approximation to the optimal ex ante relaxation. This obser-

vation relies on the following lemma, which can be derived directly based on the definition

of resemblance.

Lemma 4. For any ζ ′ ≥ ζ ≥ 1, ζ-resemblant implies ζ ′-resemblant.

7.3 Reduction Framework for Non-expected Utilities

In this paper, we have focused on designing simple mechanisms for agents with expected

utility representations. For agents with non-expected utilities, given a distribution over

per-unit prices, the demand of the agent may be different from her expected demand when

she faces the realizations of the per-unit prices in the given distribution. Therefore, our

implementation in Section 4 fails to construct an incentive compatible mechanism for agents

with with non-expected utilities due to the inherent randomness of the per-unit prices based

on the quantiles of other agents.

We show that for a special class of pricing-based mechanisms called posted pricing mech-

anisms (defined in Section 5.1), the payoff guarantees for linear agents can be approximately

extend to agents with non-expected utilities. The details of the reduction is analogous to

Theorem 2 and hence is deferred to Appendix A.3.

Note that the ordinary goods assumption is not required in the reduction framework

for sequential posted pricing mechanisms. Consequently, these mechanisms can be effec-

tively applied for the sale of Giffen goods or Veblen goods, providing approximately optimal

revenue guarantees, irrespective of whether the non-linear agents have expected utility rep-

resentations.

The crucial feature in sequential posted pricing mechanisms that allows for such gener-

alization is that before each agent purchases a lottery from the seller, she is informed about

the realizations of the per-unit prices she faces. Therefore, her demand choice in this multi-

agent mechanism is consistent with the demand in her single-agent price-posting payoff curve

without any assumptions, and thus the resulting mechanism is incentive compatible for any

non-expected utilities and guarantees identical payoffs compared to the linear agent analog.

7.4 Anonymous Pricing

A desirable property for the multi-agent setting is anonymity. This requires that the per-

unit price posted to all agents are the same. However, the approximation guarantees of

anonymous pricing for linear agents does not extend to non-linear agents with general payoff
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functions. The main reason is that given any quantile q, the market clearing price pq usu-

ally depends on the details of the utility function as well as the payoff function instead of

just depending on the price-posting payoff curve. For example, for the objective of welfare

maximization, although anonymous pricing guarantees 2-approximation for linear agents

(Lucier, 2017), it may lead to huge welfare loss for non-linear agents. See Example A.2 in

Appendix A.4 for an illustration.

In this section, we will focus on revenue maximization, and show that the approximation

guarantees of anonymous pricing for linear agents extends to non-linear agents for revenue.

The main reason why anonymous pricing extends for revenue maximization is because given

any quantile q, the market clearing price pq is uniquely pinned down by the price-posting

revenue curve P (q) as pq = P (q)
q
. This definition does not depend on the details of the utility

function.

For linear agents, Alaei et al. (2019) showed that the central assumption for constant

approximation of anonymous pricing is concavity of the price posting revenue curves. Next

we provide a general reduction framework for anonymous pricing for non-linear agents. Note

that AP({Pi}i∈N) is the optimal revenue from anonymous pricing when the price-posting rev-

enue curves are {Pi}i∈N . The proof of the following proposition is provided in Appendix A.4

Proposition 5. Fix any set of (non-linear) agents with price-posting revenue curves {Pi}i∈N
that are ζ-resemblant to their optimal revenue curves {Ri}i∈N . If the price-posting revenue

curves are concave, then anonymous pricing is a ζe-approximation to the ex ante relaxation

on the optimal revenue curves, i.e., AP({Pi}i∈N) ≥ 1/ζe · EAR({Ri}i∈N).

As instantiation of the reduction framework in Proposition 5, we can show that agents

are 1-resemblant and have concave price posting revenue curve when they have public budget

and regular valuation distributions, and they are e-resemblant when they are risk averse and

their valuation distributions satisfy the monotone hazard rate condition.

7.5 Dominant Strategy Implementation

All mechanisms implemented in our paper are dominant strategy incentive compatible mech-

anisms. In contrast to linear agents, where any Bayesian incentive compatible mechanism

can be implemented in dominant strategies for single item auctions (Gershkov et al., 2013), it

is not without loss to consider dominant strategy incentive compatible mechanisms for non-

linear agents (e.g., Feng and Hartline, 2018; Fu et al., 2018). Our results have implication

for the line of work focusing on the design of strategically simple mechanisms (e.g., Chung

and Ely, 2007; Li, 2017; Börgers and Li, 2019). A consequence of our results is that for a

broad family of non-linear agents, dominant strategy incentive compatible mechanisms are
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approximately optimal for any convex combination of welfare and revenue as the objective

function.
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A Details for Various Extensions

A.1 Welfare Maximization

Proposition 4. An agent with private budget has the price-posting welfare curve P that is

2-resemblant to her optimal welfare curve R if the budget is drawn independently from the

valuation.

The proof of Proposition 4 utilizes the price decomposition technique from Abrams (2006)

and extends it for welfare analysis.

Fix an arbitrary ex ante constraint q, denote EX as the q ex ante welfare-optimal

mechanism, and Payoff[EX] as its welfare. We want to decompose EX into two mecha-

nisms EX† and EX‡ according to the market clearing price pq and bound the welfare from

those two mechanisms separately. The decomposed mechanism may violate the incentive

constraint for budgets, and we refer to this setting as the random-public-budget utility

model. Note that the market clearing price is the same in both the private budget model

and the random-public-budget utility model. Intuitively, mechanism EX† contains per-unit

prices at most the market clearing price, while mechanism EX‡ contains per-unit prices at

least the market clearing price. Both mechanisms EX† and EX‡ satisfy the ex ante con-

straint q, and the sum of their welfare upper bounds the original ex ante mechanism EX,

i.e., Payoff[EX] ≤ Payoff
[
EX†]+Payoff

[
EX‡].

To construct EX† and EX‡ that satisfy the properties above, we first introduce a char-

acterization of all incentive compatible mechanisms for a single agent with private-budget

utility, and her behavior in the mechanisms.

Definition A.1. An allocation-payment function τ : [0, 1] → R+ is a mapping from the

allocation x to the payment p.

Lemma 5. For a single agent with private-budget utility, in any incentive compatible mecha-

nism, for all types with any fixed budget, the mechanism provides a convex and non-decreasing

allocation-payment function, and subject to this allocation-payment function, each type will

purchase as much as she wants until the budget constraint binds, or the unit-demand con-

straint binds, or the value binds (i.e., her marginal utility becomes zero).

Proof. Myerson (1981) show that any mechanisms (x, p) for a single linear agent is incentive

compatible (the agent does not prefer to misreport her value) if and only if a) x(v) is non-

decreasing; b) p(v) = vx(v) −
∫ v

0
x(t)dt. Thus, given any non-decreasing allocation x, the

payment p is uniquely pined down by the incentive constraints.
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Comparing with the linear utility, the incentive compatibility in the private-budget utility

guarantees that the agent does not prefer to misreport either her value or budget. If we relax

the incentive constraints such that she is only allowed to misreport her value, Myerson result

already shows that for any fixed budget level w, the allocation x(v, w) is non-decreasing in

v and the payment p(v, w) = vx(v, w) −
∫ v

0
x(t, w)dt is uniquely pined down. We define

the allocation-payment function τw(x̂) = max{p(v, w) + v · (x̂ − x(v, w)) : x(v, w) ≤ x̂} if

x̂ ≤ x(v̄, w); and ∞ otherwise. Given the characterization of allocation and payment above,

this allocation-payment function is well-defined, non-decreasing and convex.

This characterization is shown by relaxing the agent’s incentives for misreporting the

budget. Unlike Myerson’s result which give a sufficient and necessary condition for incentive

compatible mechanisms for linear agents, Lemma 5 only characterizes a necessary condition

for private-budget utility.18 This condition is already enough for our arguments.

Now we give the construction of EX† and EX‡ by constructing their allocation-payment

functions. The decomposition is illustrated in Figure 3. For agent with budget w, let τw

be the allocation-payment function in mechanism EX, and x∗
w be the utility maximization

allocation for a linear agent with value equal to the market clearing price pq, i.e., x∗
w =

argmax{x : τ ′w(x) ≤ pq}. For agents with budget w, we define the allocation-payment

functions τ †w and τ ‡w for EX† and EX‡ respectively below,

τ †w(x) =

{
τw(x) if x ≤ x∗

w,

∞ otherwise;
τ ‡w(x) =

{
τw(x

∗
w + x)− τw(x

∗
w) if x ≤ 1− x∗

w,

∞ otherwise.

By construction, for each type of the agent, the allocation from EX is upper bounded by

the sum of the allocation from EX† and EX‡, which implies that the welfare from EX is

upper bounded by the sum of the welfare from EX† and EX‡, and the requirements for the

decomposition are satisfied.

As sketched above, we separately bound the welfare in EX† and EX‡ by the welfare from

posting the market clearing price.

Lemma 6. For a single agent with random-public-budget utility, independently distributed

value and budget, and any ex ante constraint q, the welfare from posting the market clearing

price pq is at least the welfare from EX†, i.e., P (q) ≥ Payoff
[
EX†].

Proof. Consider agent with type (v, w) and agent with type (v′, w), where both value v and v′

are higher than the market clearing price pq. Notice that the allocations for these two types

18This characterization is only necessary because it relaxes the incentive constraints for misreporting the
private budget.
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τ †w
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∞

1

τ ‡w

τw

Figure 3: Depicted are allocation-payment function decomposition. The black lines in both
figures are the allocation-payment function τw in ex ante optimal mechanism EX; the gray
dashed lines are the allocation-payment function τ †w and τ ‡w in EX† and EX‡, respectively.

are the same in EX† and in market clearing, since the per-unit price in both mechanisms is

at most pq which makes the mechanisms unable to distinguish these two types.

Let x† be the allocation rule in EX† and let xq be the allocation rule in posting the market

clearing price pq. For any value v ≥ pq, the expected allocation for types with value v is

lower in EX† than in market clearing, i.e., Ew

[
x†(v, w)

]
≤ Ew[x

q(v, w)]. Otherwise suppose

the types with value v∗ has strictly higher allocation in EX† for some value v∗ ≥ pq, i.e,

Ew

[
x†(v∗, w)

]
> Ew[x

q(v∗, w)]. By the fact stated in previous paragraph, we have that for

any budget w and any value v, v∗ ≥ pq, xq(v, w) = xq(v∗, w), x†(v, w) = x†(v∗, w), and the

expected allocation in EX† is

Ev,w

[
x†(v, w)

]
≥ Pr[v ≥ pq] · Ev,w

[
x†(v, w) | v ≥ pq

]
= Pr[v ≥ pq] · Ew

[
x†(v∗, w)

]
> Pr[v ≥ pq] · Ew[x

q(v∗, w)]

= Pr[v ≥ pq] · Ev,w[x
q(v, w) | v ≥ pq] = q,

where the qualities hold due to the independence between the value and the budget. Note

that this implies that EX† violates the ex ante constraint q, a contradiction. Further, for any

type with value v ≥ pq, Ew

[
x†(v, w)

]
≤ Ew[x

q(v, w)] implies that the allocation in market

clearing “first order stochastic dominates” the allocation in EX†, i.e., for any threshold v†,

the expected allocation from all types with value v ≥ v† in market clearing is at least the

expected allocation from those types in EX†. Taking expectation over the valuation and

the budget, the expected welfare from market clearing is at least the welfare from EX†, i.e.,

P (q) ≥ Payoff
[
EX†].

Lemma 7. For a single agent with random-public-budget utility, independently distributed
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value and budget, and any ex ante constraint q; the welfare from market clearing is at least

the welfare from EX‡, i.e., P (q) ≥ Payoff
[
EX‡].

Proof. In both EX‡ and market clearing, types with value lower than pq will purchase noth-

ing, so we only consider the types with value at least pq in this proof. Consider any type

(v, w) where v ≥ pq, its allocation in market clearing is at least its allocation in EX‡, because

the per-unit price in EX‡ is higher. Thus, the welfare from market clearing is at least the

welfare from EX‡, i.e., P (q) ≥ Payoff
[
EX‡].

Intuitively, in EX†, we are able to show that for any value higher than pq, the expected

allocation of the agent in EX† is weakly lower compared to market clearing in order for the

ex ante feasibility constraint to be satisfied. Thus allocation given the market clearing price

“first order stochastic dominates” the allocation in EX†, and hence expected welfare in EX†

is lower compared to posting market clearing price pq.

In EX‡, types with value lower than pq will purchase nothing, and types with value higher

than pq will less compared to market clearing price as the per-unit price in EX‡ is higher.

Thus the expected welfare in EX‡ is also lower compared to posting market clearing price pq.

Proof of Proposition 4. Combining Lemma 6 and 7, for any quantile q, we have

R(q) = Payoff[EX] ≤ Payoff
[
EX†]+Payoff

[
EX‡] ≤ 2P (q) ≤ max

q′≤q
2P̄ (q′).

A.2 Convex Combination of Two Payoff Functions

Lemma 3. If an agent is ζ-resemblant for objective 1 and ζ ′-resemblant for objective 2 with

non-negative values, then this agent is (ζ+ ζ ′)-resemblant for any convex combination of the

two objectives.

Proof. For any quantile q, let EX be the q ex ante optimal mechanism for the convex com-

bination of the objectives. Let Payoff1[EX] be the contribution of objective 1 given mech-

anism EX and Payoff2[EX] be the contribution of objective 2 given mechanism EX. Let

Payoff[EX] = α · Payoff1[EX] + (1 − α) · Payoff2[EX] be the convex combination of the

contributions given α ∈ (0, 1). Let q1 = argmaxq′≤q P̄1(q
′) and q2 = argmaxq′≤q P̄2(q

′), where

P̄1 and P̄2 are the concave hull of price posting payoff curves for objectives 1 and 2 respec-

tively. Let P̄ be the concave hull of price posting payoff curves for the convex combination

of objectives 1 and 2. Then, we have

Payoff[EX] = α ·Payoff1[EX] + (1− α) ·Payoff2[EX]

≤αζ · P̄1(q1) + (1− α)ζ ′ · P̄2(q2) ≤ ζ · P̄ (q1) + ζ ′ · P̄ (q2) ≤ (ζ + ζ ′)max
q′≤q

P̄ (q′).
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Thus this agent is (ζ + ζ ′)-resemblant for the convex combination of the two objectives.

A.3 Reduction Framework for Non-expected Utilities

We first formally introduce the model of non-expected utilities. In Appendix A.3.1, we

present the reduction framework that converts sequential posted pricing mechanisms for lin-

ear agents to non-linear agents without expected utility representations, and approximately

preserves its payoff approximation guarantee. We illustrate the application of our framework

by showing that agents with endogenous valuations are 1-resemblant for both welfare and

revenue maximization in Appendix A.3.2.

Non-expected Utilities. For any agent with type t, her utility for a distribution π over

allocations and payments is u(t, π). Given a per-unit price p, letting πp(z) be the distribution

over allocations and payments given demand z, the optimal demand of the agent is

d(t, p) ∈ max
z∈[0,1]

u(t, πp(z)).

We assume that the maximum demand is always attainable. Moreover, we assume the

demand correspondence d(t, p) is upper hemi-continuous and has convex image for any type t.

Therefore, the price-posting payoff curves P (q), ironed price-posting payoff curve P̄ , and

optimal payoff curves R(q) in Section 2 can be analogously defined for agents with non-

expected utilities.19 We also say such an agent is ζ-resemblant if her ironed price-posting

payoff curve P̄ is ζ-resemblant to her optimal payoff curve R.

A.3.1 Reduction Framework for Sequential Posted Pricing

We present a reduction framework that converts sequential posted pricing mechanisms for lin-

ear agents to non-linear agents without expected utility representations, and approximately

preserves its payoff approximation guarantee.

Theorem 4. Fix any set of non-linear agents with price-posting payoff curves {Pi}i∈N that

are ζ-resemblant to their optimal payoff curves {Ri}i∈N . If there exists a sequential posted

pricing mechanism that is a γ-approximation to the ex ante relaxation for linear agents analog

with price-posting payoff curves {Pi}i∈N , i.e., SPP({Pi}i∈N) ≥ 1/γ ·EAR({P̄i}i∈N), then this

mechanism is also a γζ-approximation to the ex ante relaxation for non-linear agents, which

implies that SPP({Pi}i∈N) ≥ 1/γ ζ · EAR({Ri}i∈N).
19For agents with non-expected utilities, the ironed price-posting payoff curve can still be attained by

randomizing over at most two per-unit prices, and letting the agent know about the realizations of the
per-unit prices before making her demand choices.

41



Proof. Let {q†i }i∈N be the profile of optimal ex ante quantiles for optimal payoff curves

{Ri}i∈N . Since the ironed price-posting payoff curves {P̄i}i∈N are ζ-resemblant to the optimal

payoff curves {Ri}i∈N , there exists a sequence of quantiles {q‡i }i∈N such that for any agent i,

q‡i ≤ q†i and P̄ (q‡i ) ≥ 1/ζ · R(q†i ). Note that since
∑

i q
‡
i ≤

∑
i q

†
i ≤ 1, {q‡i }i∈N is also feasible

for ex ante relaxation. Therefore,

EAR({Ri}i∈N) =
∑
i∈N

Ri(q
†
i ) ≤ ζ ·

∑
i∈N

P̄i(q
‡
i ) ≤ ζ · EAR({P̄i}i∈N).

Since the expected payoff of the sequential posted pricing mechanism only depends on the

price posting payoff curves, not on the agents’ utility models, we have

SPP({Pi}i∈N) ≥ 1/γ · EAR({P̄i}i∈N) ≥ 1/γ ζ · EAR({Ri}i∈N),

and Theorem 4 holds.

A.3.2 Endogenous Valuation

Each agent i ∈ N can make costly investments before the auction by taking action ai ∈ R.
For agent i with private type ti, the cost for action ai is ci(ai) and the value for the item is

vi(ai, ti) = ai + ti. Given allocation x and payment p, agent i taking action ai has utility

x · vi(ai, ti)− p− ci(ai). This is the model presented in Gershkov et al. (2021).20 Note that

in this endogenous utility model, the agent can be equivalently modeled as one with convex

preference over allocations, which does not satisfy the expected utility characterization.

For agents with endogenous valuation, in order to apply our reduction framework, it is

important to specify the timeline for agents to exert costly efforts as it affects the equilibrium

payoff of any given mechanism. In this paper, we assume that the agent can delay the

investment decision until she sends a message to the seller. In the case of sequential posted

pricing mechanisms, for each agent i, the agent makes the investment decisions after she sees

the realized price offered by the seller. Note that the price is infinite if the item is sold to

previous agents and agent i will not make any investment given this price.

Under this timeline of the model, we can show that agents with endogenous valuation

are 1-resemblant for both welfare maximization and revenue maximization under regularity

conditions. This implies that the worst-case approximation guarantee of sequential posted

pricing for agents with endogeous valuations is the same as linear agents when compared to

20Gershkov et al. (2021) characterized the single-agent revenue optimal mechanism for slightly more general
classes of valuation functions. To simplify the presentation, in this paper, we only illustrate the proof for
this special form of valuation function, and the same technique can be easily extended to broader settings.
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the ex ante relaxation for the objective of both welfare and revenue maximization.

Lemma 8 (Fan and Lorentz, 1954; Gershkov et al., 2021). For any function L : R2 → R such

that L(x, q) is supermodular in (x, q) and convex in x, for any pair of allocations x ≺ x̂,21

we have ∫ 1

0

L(x(q), q) dq ≤
∫ 1

0

L(x̂(q), q) dq.

Proposition 6. An agent with endogenous valuation has the price-posting welfare curve P

that equals (i.e. 1-resemblant) her optimal welfare curve R.

Proof. For an agent with endogenous valuation, her type t is mapped to quantile q according

to type distribution F̄ in the same way as a linear agent, i.e., the quantile is in essence one

minus the inverse of the cumulative distribution function. Let L(x, q) be the welfare of the

agent with type corresponding to quantile q when she makes optimal investment decision

given allocation x. By Gershkov et al. (2021), the function L(x, q) is supermodular in (x, q)

and convex in x. For any quantile constraint q̂, let x̂ be the allocation such that x̂(q) = 1 for

any q ≤ q̂ and x̂(q) = 0 otherwise. Any incentive compatible mechanism with allocation x

that sells the item with probability q̂ satisfies x ≺ x̂. By Lemma 8, the optimal mechanism

that is q̂ feasible has allocation rule x̂, which is posting a deterministic price to the agent.

Thus this agent has price-posting welfare curve P that equals (i.e. 1-resemblant) her optimal

welfare curve R.

Proposition 7. An agent with endogenous valuation and regular type distribution has the

ironed price-posting revenue curve P̄ that equals (i.e. 1-resemblant) her optimal revenue curve

R.

Proof. Let L(x, q) be the virtual value of the agent given allocation x and type with quan-

tile q. By Gershkov et al. (2021), the function L(x, q) is supermodular in (x, q) and convex

in x if the type distribution is regular. Similar to Proposition 6, for any quantile q̂, the opti-

mal mechanism for maximizing the expected virtual value that sells the item with probability

at most q̂ is posted pricing. Since the expected revenue equals the expected virtual value, this

agent has price-posting revenue curve P̄ that equals (i.e. 1-resemblant) her optimal revenue

curve R.

21x ≺ x̂ means that for any q̂ ∈ [0, 1],
∫ q̂

0
x(q) dq ≤

∫ q̂

0
x̂(q) dq and

∫ 1

0
x(q) dq =

∫ 1

0
x̂(q) dq.
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A.4 Anonymous Pricing

Example A.2. Consider the single-item setting with two budget agents. Let v be a suffi-

ciently large number. Agent 1 has value v and no budget constraint while agent 2 has value v2

and budget 1. The welfare optimal mechanism allocates the item to agent 2, with welfare v2.

However, if the anonymous price is at most v, then agent 1 will buy the whole item and

if the anonymous price is larger than v, the item is sold with probability at most 1
v
. Thus

anonymous pricing can guarantee welfare at most v, with approximation factor at least v,

which is unbounded.

Proposition 5. Fix any set of (non-linear) agents with price-posting revenue curves {Pi}i∈N
that are ζ-resemblant to their optimal revenue curves {Ri}i∈N . If the price-posting revenue

curves are concave, then anonymous pricing is a ζe-approximation to the ex ante relaxation

on the optimal revenue curves, i.e., AP({Pi}i∈N) ≥ 1/ζe · EAR({Ri}i∈N).

Proof. Let {qi}i∈N be the optimal ex ante relaxation for ex ante revenue curves {Ri}i∈N ,
and let q†i be the quantile assumed to exist by ζ-resemblance such that q†i ≤ qi and P̄i(q

†
i ) ≥

1
ζ
Ri(qi) for each i. Since the price-posting revenue curves are concave, we have {Pi}i∈N =

{P̄i}i∈N , and

EAR({Pi}i∈N) = EAR({P̄i}i∈N) ≥
∑

i
P̄i(q

†
i ) ≥

1

ζ

∑
i
R(qi) =

1

ζ
EAR({Ri}i∈N).

By Alaei et al. (2019), e · AP({Pi}i∈N) ≥ EAR({Pi}i∈N) if the price-posting revenue curves

{Pi}i∈N are concave. Combining the inequalities, we have

ζe · AP({Pi}i∈N) ≥ EAR({Ri}i∈N).

A.5 Oblivious Posted Pricing

For oblivious posted pricing mechanisms (e.g. Chawla et al., 2010), we show how to apply

resemblant property between the ironed price-posting payoff curve and optimal payoff curve

to obtain approximation results for agents with general utility. Similar to sequential posted

pricing, we will define the oblivious posted price in quantile space.

Definition A.3. An oblivious posted pricing mechanism is ({qi}i∈N) where the adversary

chooses an ordering {oi}i∈N of the agents, and {qi}i∈N denotes the quantile corresponding

to the per-unit prices to be offered to agents at the time they are considered according to the

order {oi}i∈N if the item is not sold to previous agents. Note that quantiles {qi}i∈N can be

dynamic and depends on both the order and realization of the past agents.
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Given the definition of the oblivious quantile pricing mechanism, we denote the payoff

of the oblivious quantile pricing mechanism ({qi}i∈N) for agents with a collection of price-

posting payoff curves {Pi}i∈N by OPP({Pi}i∈N , {qi}i∈N), and the optimal payoff for the

oblivious quantile pricing mechanism is

OPP({Pi}i∈N) = max
{qi}i∈N

OPP({Pi}i∈N , {qi}i∈N).

Similar to Theorem 4, we have the following reduction framework for oblivious posted

pricing for non-linear agents. The proof is identical to Theorem 4, hence omitted here.

Theorem 5. Fix any set of (non-linear) agents with price-posting payoff curves {Pi}i∈N
that are ζ-resemblant to their optimal payoff curves {Ri}i∈N . If there exists an oblivious

posted pricing mechanism ({qi}i∈N) that is a γ-approximation to the ex ante relaxation for

linear agents analog with price-posting payoff curves {Pi}i∈N , i.e., OPP({Pi}i∈N , {qi}i∈N) ≥
1/γ ·EAR({P̄i}i∈N), then this mechanism is also a γζ-approximation to the ex ante relaxation

for non-linear agents, i.e., OPP({Pi}i∈N , {qi}i∈N) ≥ 1/γ ζ · EAR({Ri}i∈N).

For the single item setting, there exists an oblivious posted pricing mechanism that is

a 2-approximation to the ex ante relaxation for linear agents (Feldman et al., 2016). In

addition, if the price-posting payoff curves are the same for all gents, the approximation

ratio is improved to 1/(1− 1/
√
2π) (Yan, 2011).

A.6 General Feasibility Constraint

Our results can be generalized to multi-unit auctions with downward closed feasibility con-

straints. Let X be the set of feasible allocation profiles. The set X is downward closed if for

any {xi}i∈N ∈ X , we have {x′
i}i∈N ∈ X if x′

i ≤ xi for any i ∈ N . We denote the set of ex

ante feasible quantiles with respect to feasibility constraint X by EAF(X ). The optimal ex

ante payoff given a specific collection of payoff curves {Ri}i∈N and feasibility constraint X is

EAR({Ri}i∈N ,X ) = max
{qi}i∈N⊆EAF(X )

∑
i∈N

Ri(qi).

Given feasibility constraint X , the sequential posted pricing mechanism ({oi}i∈N , {qi}i∈N)
offers each agent i the price corresponding to quantile qi according to order {oi}i∈N if it

is feasible to serve agent i given the allocation of previous agents. The payoff achieved

by the sequential posted pricing mechanism ({oi}i∈N , {qi}i∈N) for agents with a specific

collection of price-posting payoff curves {Pi}i∈N given feasibility constraint X is denoted by
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SPP({Pi}i∈N , {oi}i∈N , {qi}i∈N ,X ).22

It is easy to verify that the reduction framework for (sequential) posted pricing mecha-

nisms (Theorem 4) and the reduction framework for pricing-based mechanism (Theorem 2)

directly apply when there is a downward closed feasibility constraint X . In addition, it is

shown in the literature that for general class of feasibility constraints, posted pricing mech-

anisms are approximately optimal for linear agents. We formally state the reduction result

for sequential posted pricing in the following theorem.

Theorem 6. Given feasibility constraint X , for linear agents with the price-posting payoff

curves {Pi}i∈N , there exists a sequential posted pricing mechanism ({oi}i∈N , {qi}i∈N) that

is a γ-approximation to the ex ante relaxation, i.e., SPP({Pi}i∈N , {oi}i∈N , {qi}i∈N ,X ) ≥
1/γ · EAR({P̄i}i∈N ,X ) where γ = e/(e− 1) if X is a matroid (Yan, 2011), γ = 1/(1− 1/

√
2π) if X

is a knapsack (Balkanski and Hartline, 2016), and γ = 1/(1− 1/
√
2πk) for k-unit auctions (Yan,

2011).

B Missing Proofs for Resemblance of Revenue Maxi-

mization

B.1 Risk Aversion

Proposition 1. A risk-averse agent is e-resemblant if her marginal value distribution sat-

isfies MHR condition.

Our proof relies on the following three auxiliary lemmas.

Lemma 9. For every risk-averse agent and every mechanism that is BIC and IIR, the

expected revenue is at most the expected allocated value.

Proof. Let x and p be the allocation and payment rule of the BIC, IIR mechanism. For an

agent with risk-averse type t = (v, φ), her expected utility is E[φ(vx(v)− p(v))]. Since the

mechanism is individual rational and φ is concave,

φ (E[vx(v)− p(v)]) ≥ E[φ(vx(v)− p(v))] ≥ 0

Combining with the assumption that φ is increasing with φ(0) = 0, we obtain E[vx(v)] ≥
E[p(v)] as desired.

22Here we only formally discuss the extension for sequential posted pricing mechanisms. The generaliza-
tions for other posted pricing mechanisms hold similarly.
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Lemma 10. For any MHR distribution F and any threshold v̂ ∈ R+, the conditional distri-

bution F≥v̂ (conditioning on random variable v ∼ F is at least v̂) is also MHR.

Proof. It suffices the verify the monotonicity of the hazard rate function h≥v̂(·) for conditional
distribution F≥v̂. Let f , f≥v̂ be the density function of distribution F and F≥v̂, respectively.

Note that

h≥v̂(v) =
f≥v̂(v)

1− F≥v̂(v)
=

f(v)
(1−F (v̂))

1−F (v)
(1−F (v̂))

=
f(v)

1− F (v)
= h(v)

where h(·) is the hazard rate function for distribution F , the first and last equality holds

by definition, and the second equality holds due to the definition of conditional distribution.

Finally, invoking the monotonicity of hazard rate function h(·) finishes the proof.

Lemma 11 (Hartline and Roughgarden, 2009). For any MHR value distribution F , it is

guaranteed that maxp∈R+ p(1− F (p)) ≥ e · Ev∈F [v].

As a sanity check, Lemma 11 suggests that for a linear agent with value drawn from

MHR distribution F , the optimal revenue maxp∈R+ p(1 − F (p)) is at least an 1
e
-fraction of

the expected full surplus Ev∈F [v].

Now we are ready to prove Proposition 1.

Proof of Proposition 1. Fix an arbitrary q̂ ∈ [0, 1]. Let F be the marginal value distribution.

To simplify the presentation, we assume F is a continuous distribution. The analysis for gen-

eral distribution can be extended straightforwardly. With slight abuse of notation, we denote

v(q) ≜ F−1(q) for each quantile q ∈ [0, 1]. Invoking Lemma 9, the expected revenue of the q̂

ex ante revenue-optimal mechanism is at most Eq∼U [0,1][v(q) · 1[q ≤ q̂]] = q̂ · Eq′∼U [0,q̂][v(q
′)].

Note that the random variable v(q′) where q′ ∼ U [0, q̂] can be interpreted as the ran-

dom variable drawn from conditional distribution F≥vq̂. Invoking Lemmas 10 and 11,

it ensures that there exists a price p ≥ v(q̂) such that its expected revenue is at least

Eq∼U [0,1][v(q) · 1[q ≤ q̂]]. Since p ≥ v(q̂), the expected allocation probability is at most q̂.

Therefore, maxq≤q̂ P (q) ≥ 1
e
·R(q̂) as desired.

B.2 Necessity of Assumptions

Example B.1 (Necessity of the independence between the value and budget distributions).

Fix a large constant h. Consider a single agent with value v drawn from [1, h] with density

function h
h−1

1
v2
, and budget w = 2h − v, i.e., her value and budget are fully correlated. A

mechanism which charges the agent v − 2ϵ with probability 1 − ϵ
h
, or w with probability ϵ

h
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for sufficient small positive ϵ is incentive compatible and has revenue O(lnh). However, the

revenue of the posted pricing is O(1).

Example B.2. Consider a budgeted agent where the budget distribution is the discrete equal

revenue distribution, i.e., g(i) = 1/ϖ · i2, where ϖ = π2/6. Let the quantile function of the

valuation distribution be q(i) = 1/ln i. The optimal price posting revenue is a constant.

Next consider the pricing function τ(x) = 1
1−x

. From this pricing function, the value vi

corresponding to payment i is vi = i2. Note that the revenue from this payment function is

infinity, i.e.,

Payoff[τ ] ≥ lim
m→∞

m∑
i=1

(i · q(vi) · g(i))

=
1

2ϖ
lim

m→∞

m∑
i=1

1

i · ln i

=
1

2ϖ
lim

m→∞
ln lnm → ∞.

Therefore, the gap between price posting and the optimal mechanism is infinite.

B.3 Public Budget

Proposition 2. A public-budget agent is 1-resemblant if her marginal value distribution is

regular.

Proof. For an agent with public budget w, the q̂ ex ante optimal mechanism is the solution

of the following program,

max
(x,p)

Ev[p(v)]

s.t. (x, p) are IC, IR,

Ev[x(v)] = q̂,

p(v̄) ≤ w.

(2)

where v̄ is the highest possible value of the agent. Consider the Lagrangian relaxation of the

budget constraint in (2),

min
λ≥0

max
(x,p)

Ev[p(v)] + λw − λp(v̄)

s.t. (x, p) are IC, IR,

Ev[x(v)] = q̂.

(3)
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Let λ∗ be the optimal solution in program (3). If we fix λ = λ∗ in program (3), its inner

maximization program can be thought as a q̂ ex ante optimal mechanism design for a linear

agent with Lagrangian objective function Ev[p(v)]−λ∗p(v̄). Thus, we define the Lagrangian

price-posting revenue curve Pλ∗(·) where Pλ∗(q) is the maximum value of the Lagrangian

objective Ev[p(v)] − λ∗p(v̄) in price-posting mechanism with per-unit price V (q). For any

q ∈ (0, 1], by the definition, Pλ∗(q) = qV (q)− λ∗V (q). For q = 0, notice that the agent with

v̄ is indifferent between purchasing or not purchasing. Thus, by the definition, Pλ∗(q) = 0 if

q = 0.

Now, we consider the concave hull of the Lagrangian price-posting revenue curve Pλ∗(·)
which we denote as P̂λ∗(·). Let q† be the smallest solution of equation Pλ∗(q) = qP ′

λ∗(q).

Since Pλ∗(0) ≤ 0, Pλ∗(1) = 0 and Pλ∗(·) is continuous, q† always exists. Then, for any q ≤ q†,

P̂λ∗(q) = q P ′
λ∗(q†). For any q ≥ q†, we show P̂λ∗(q) = Pλ∗(q) by the following arguments.

First notice that Pλ∗(q†) ≥ 0, and hence q† ≥ λ∗. Consider P ′′
λ∗(q) = V ′′(q)(q− λ∗) + 2V ′(q).

Clearly, V ′(q) ≤ 0. If V ′′(q) ≤ 0, then P ′′
λ∗(q) ≤ 0. If V ′′(q) > 0, then P ′′

λ∗(q) = V ′′(q)(q −
λ∗) + 2V ′(q) ≤ qV ′′(q) + 2V ′(q) ≤ 0, where qV ′′(q) + 2V ′(q) is non-positive due to the

regularity of the valuation distribution.

To summarize, P̂λ∗(·), the concave hull of the Lagrangian price-posting revenue curve

satisfies

P̂λ∗(q) =

{
q P ′

λ∗(q†) if q ∈ [0, q†]

Pλ∗(q) if q ∈ [q†, 1]

Therefore, use the similar ironing technique based on the revenue curves for linear agents

with irregular valuation distribution (e.g. Myerson, 1981; Bulow and Roberts, 1989; Alaei

et al., 2013), Lemma 12 (stated below) suggests that the q̂ ex ante optimal mechanism

irons quantiles between [0, q†] under q̂ ex ante constraint, which is still a posted-pricing

mechanism.

Lemma 12 (Alaei et al., 2013). For incentive compatible and individual rational mechanism

(x(·), p(·)) and an agent with any Lagrangian price-posting revenue curve Pλ∗(q), the expected

Lagrangian objective of the agent is upper-bounded by her expected marginal Lagrangian ob-

jective of the same allocation rule, i.e.,

Ev[p(v)] + λ∗p(v̄) ≤ Eq

[
P̂ ′
λ∗(q) · x(V (q))

]
.

Furthermore, this inequality holds with equality if the allocation rule x(·) is constant all

intervals of values V (q) where P̂λ∗(q) > Pλ∗(q).

For an agent with a general valuation distribution, resemblance follows from the charac-
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Figure 4: The thin solid line is the allocation rule for the optimal ex ante mechanism.
The thick dashed line on the left side is the allocation of the decomposed mechanism with
lower price, while the thick dashed line on the right side is the allocation of the decomposed
mechanism with higher price.

terization that the ex ante optimal mechanism has menu size at most 2 (Alaei et al., 2013).

Thus offering the optimal single menu pricing mechanism, i.e., posting the market clearing

price, is a 2-approximation.

Lemma 13 (Alaei et al., 2013). For a single agent with public budget, the q ∈ [0, 1] ex ante

optimal mechanism has a menu with size at most two.

Proposition 8. An agent with public budget has the ironed price-posting revenue curve P̄

that is 2-resemblant to her optimal revenue curve R.

Proof. By Lemma 13, the allocation rule xq of the ex ante revenue maximization mechanism

for the single agent with public budget has a menu of size at most two. We decompose its

allocation into xL and xH as illustrated in Figure 4. Note that both allocation xL and xH

are (randomized) price-posting allocation rules, and neither allocation violates the allocation

constraint q. Thus,

R(q) = Payoff[xq] = Payoff[xL] +Payoff[xH ] ≤ 2 max
q†≤q

P̄ (q†).

B.4 Private Budget

Proposition 3. A private-budget agent is 3-resemblant if her value and budget are indepen-

dently distributed, and her marginal value distribution is regular.

Fix an arbitrary ex ante constraint q, denote EX as the q ex ante revenue-optimal mech-

anism, and Payoff[EX] as its revenue. We decompose EX into two mechanisms EX† and

EX‡ according to the market clearing price pq. Intuitively, the per-unit prices in EX† for
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all types are at most the market clearing price and the per-unit prices in EX‡ for all types

are larger than the market clearing price. The details of the decomposition is specified in

Appendix A.1, and we will bound the revenue from those two mechanisms separately.

Lemma 14. For a single agent with random-public-budget utility, independently distributed

value and budget, and any ex ante constraint q; the revenue of EX† is at most the revenue

from posting the market clearing price, i.e., P (q) ≥ Payoff
[
EX†].

Proof. The ex ante allocation of EX† is at most the ex ante allocation of EX, i.e., q. Com-

bining with the fact that the per-unit prices in EX† for all types are weakly lower than

the market clearing price, its revenue is at most the revenue of posting the market clearing

price.

For the revenue bound of EX‡, we consider two different cases: (1) the market clearing

price is larger than the monopoly reserve; and (2) the market clearing price is smaller than

the monopoly reserve. The proofs of Lemma 15 and 16 are provided at the end of this

section.

Lemma 15. For a single private-budget agent with independently distributed value and bud-

get and regular value distribution, if the market clearing price pq = P (q)/q is larger than the

monopoly reserve, i.e., pq = P (q)/q ≥ m∗, the revenue of posting the market clearing price

is at least the revenue of EX‡, i.e., P (q) ≥ Payoff
[
EX‡].

Intuitively, Lemma 15 is analyzed separately for each realized budget under two cases. If

the budget is lower than the market clearing price, then the budget binds and the revenues

are the same in both cases. If the budget is higher than the market clearing price, then

the budget does not bind, and the revenue comparison is analogous to the setting without

budget constraints. Since the revenue curve is concave and the market clearing price is larger

than the monopoly reserve, higher price in EX‡ leads to lower expected revenue.

Lemma 16. For a single private-budget agent with independently distributed value and bud-

get and regular value distribution, if the market clearing price pq = P (q)/q is smaller than

the monopoly reserve, there exists q† ≤ q such that the market clearing revenue from q† is a

2-approximation to the revenue from EX‡, i.e., 2P (q†) ≥ Payoff
[
EX‡].

In fact, we show there is a distribution over interim feasible random pricing that attains

at least half of the optimal ex ante revenue. Of course, the optimal deterministic price

that is at least pq is only better than the random price, and hence the lemma is shown.

Specifically, consider posting a random price p = max{pq,p0} with p0 drawn identically to

the agents value distribution. As shown in Figure 5, the revenue from the random pricing
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w

Payoffw[p]
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pqwPayoffw[OPTw]

Figure 5: In the geometric proof of Lemma 16, the upper bound on the expected revenue of
EX‡ (Payoffw[p] and Payoffw[OPTw] on the left and right, respectively) is the area of the
light gray striped rectangle and the revenue from posting random price p is the area of the
dark gray region. By geometry, the latter is at least half of the former. The black curve is
the price-posting revenue curve with no budget constraint PL. The figure on the left depicts
the small-budget case (i.e., w < pq), and the figure on the right depicts the large-budget case
(i.e., w ≥ pq).

p corresponds to the dark grey area, while the optimal ex ante revenue corresponds to the

light grey area. By the concavity of the revenue curve, the geometry of the figure directly

implies the 2-approximation on expected revenue.

Proof of Proposition 3. Fix any ex ante constraint q. If the market clearing price pq = P (q)/q

is at least the monopoly reserve, Lemma 14 and Lemma 15 imply that Payoff
[
EX†] ≤ P (q),

and Payoff
[
EX‡] ≤ P (q), thus, P (q) is a 2-approximation to Payoff

[
EX†]+Payoff

[
EX†] =

Payoff[EX], i.e., R(q). If the market clearing price pq is smaller than the monopoly reserve,

let q† = argmaxq′≤q P (q′), Lemma 14 and Lemma 16 imply that Payoff
[
EX†] ≤ P (q) ≤

P (q†), and Payoff
[
EX‡] ≤ 2P (q†), thus, P (q†) is a 3-approximation to R(q). Thus, the

agent is 3-resemblant for ex ante optimization.

Proof of Lemma 15. In both EX‡ and the mechanism that posts the market clearing price,

the types with value lower than the market clearing price pq will purchase nothing, so we

only consider the types with value at least pq in this proof. Each budget level is considered

separately.

For types with budget w ≤ pq, by posting the market clearing price pq, those types always

pay their budgets w, which is at least the revenue from those types in EX‡.

For types with budget w > pq, by posting the market clearing price pq, those types always

pay pq. Since the budget constraints do not bind for these types, it is helpful to consider

the price-posting revenue curve without budget, which we denote by PL. The regularity of

the valuation distribution guarantees that PL is concave. The concavity of PL implies that

higher prices above m∗ extracts lower revenue than pq. Since the per-unit prices in EX‡ for

all types are at least pq, the concavity of PL guarantees that the expected revenue of posting
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pq for types with budget larger than p is at least the expected revenue for those types in

EX‡. Combining these bounds above, we have P (q) ≥ Payoff
[
EX‡].

Proof of Lemma 16. Note that any price that is at least pq is feasible for the ex ante con-

straint q. We consider posting a random price p = max{pq,p0} with p0 drawn identically

to the agents value distribution. Fixing the budget of the agent w, consider the following

geometric argument (cf. Dhangwatnotai et al., 2015). For both sides of Figure 5, the area of

the light gray stripped rectangle upper bounds the revenue of EX‡ and the area of the dark

gray region is the expected revenue from posting random price p. Consequently, concavity

of the price-posting revenue curve with no budget constraint PL (by regularity of the value

distribution) implies that a triangle with half the area of the light gray rectangle is con-

tained within the dark gray region and, thus, the random price is a 2-approximation. As the

random price does not depend on the budget w, the same bound holds when w is random.

Of course, the optimal deterministic price that is at least pq is only better than the random

price and the lemma is shown. The remainder of this proof verifies that the geometry of the

regions described above is correct.

The left side of Figure 5 depicts the fixed budgets w that are at most pq. The area of

the light gray striped rectangle upper bounds the revenue of EX‡ as follows. Let Payoffw[p]

be the expected revenue from posting price p to types with budget w. Under both EX‡ and

the market clearing price pq, types with value below the market clearing price pay zero. For

the remaining types, in EX‡ they pay at most their budget and in market clearing they pay

exactly their budget. Thus, Payoffw

[
EX‡] ≤ Payoffw[p

q] = w (1 − F (pq)) where, recall,

1 − F (pq) is the probability the agent’s value is at least the market clearing price pq. Of

course, w (1− F (pq)) is the height and area (its width is 1) of the light gray striped region

on the left side of Figure 5.

The right side of Figure 5 depicts the fixed budgets w that are at least pq. The area of the

light gray striped rectangle upper bounds the revenue of EX‡ as follows. Let OPTw be the

optimal mechanism to types with budget w without ex ante constraint and Payoffw[OPTw]

be its expected revenue from these types. Clearly, Payoffw

[
EX‡] ≤ Payoffw[OPTw] as

the latter optimizes with relaxed constraints of the former. Laffont and Robert (1996)

show that OPTw posts the minimum between budget w and the monopoly reserve m∗ when

the agent has public budget and regular valuation. As the budget does not bind for this

price, its revenue is given by the price-posting revenue curve with no budget constraint, i.e.,

Payoffw[OPTw] = PL(1 − F (min{w,m∗})). Of course, this revenue is the height and area

(its width is 1) of the light gray striped region on the right side of Figure 5.

Next, we will show that the revenue of posting the random price p is the grey shaded

areas illustrated in Figure 5 (in both cases). A random price from the value distribution,
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i.e., p0, corresponds to a uniform random quantile constraint, i.e., drawing uniformly from

the horizontal axis. Since we truncate the lower end of the price distribution at the market

clearing price pq, the revenue from quantiles greater than q equals the revenue from the

market clearing price. For any fixed w, when p ∈ [pq, w], the budget does not bind and the

revenue of posting price p is PL(q) where PL is the price-posting revenue curve without

budget; and when p > w, the revenue of posting price p is wq. Thus, the revenue from a

random price is given by the integral of the area under the curve defined by qw when p ≥ w,

by PL(q) when p ∈ [w, pq] and this interval exists, and by min(w, pq) when p = pq, i.e.,

when p0 ≤ pq. This area is the dark gray region.

B.5 Private Budget: Assumption on the Budget Distribution

We consider the assumption that the budget exceeds its expectation with constant probability

at least 1/κ. This assumption on budget distribution is also studied in Cheng et al. (2018).

Notice that a commonly adopted distribution assumption, monotone hazard rate, is a special

case of it with κ = e (cf. Barlow and Marshall, 1965).

Proposition 9. A single agent with private-budget utility has an ironed price-posting revenue

curve P̄ that is (1 + 3κ− 1/κ)-resemblant to her optimal revenue curve R, if her value and

budget are independently distributed, and the probability the budget exceeds its expectation is
1/κ.

Let w∗ denote the expected budget of the agent. For any ex ante constraint q, denote

EX as the q ex ante revenue optimal mechanism.

The high level idea here is similar to the analysis for welfare, i.e., the price decomposition

technique. Consider the decomposition of EX into three mechanisms EX†, EX§ and EX‡ such

that mechanism EX† contains per-unit prices at most the market clearing price, mechanism

EX‡ contains per-unit prices at least the expected budget, while mechanism EX§ contains

per-unit prices between the market clearing price and the expected budget. All mechanisms

satisfy the ex ante constraint q, and the sum of their welfare is upper bounded by the welfare

of the original ex ante mechanism EX, i.e., Payoff[EX] ≤ Payoff
[
EX†] + Payoff

[
EX§] +

Payoff
[
EX‡]. Note that in the special case where the market clearing price is larger than

the expected budget, i.e., pq > w∗, EX§ does not exist and mechanism EX is decomposed

into EX† and EX‡.

We construct the allocation-payment functions τ †w, τ
‡
w and τ §w for EX†, EX‡, and EX§

respectively. For each budget w, let τw be the allocation-payment function for types with

budget w in mechanism EX, and x∗
w be the utility maximization allocation for the agent with

value and budget equal to the market clearing price pq, i.e., x∗
w = argmax{x : τ ′w(x) ≤ pq}.
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Let x♯
w be the utility maximization allocation for the agent with value and budget equal to

the expected budget w∗, i.e., x♯
w = argmax{x : τ ′w(x) ≤ w∗}. Then the allocation-payment

functions τ †w, τ
‡
w and τ §w are defined respectively as follows,

τ †w(x) =

{
τw(x) if x ≤ x∗

w,

∞ otherwise;

τ §w(x) =

{
τw(x

∗
w + x)− τw(x

∗
w) if x ≤ x♯

w − x∗
w,

∞ otherwise;

τ ‡w(x) =

{
τw(x

♯
w + x)− τw(x

♯
w) if x ≤ 1− x♯

w,

∞ otherwise.

The revenue contribution from EX† is bounded in Lemma 14. Next we illustrate how to

bound the revenue from EX‡ and EX§ respectively using the revenue from price-posting.

Lemma 17. For a single agent with private-budget utility, independently distributed value

and budget, for any quantile q, there exists q† ∈ [0, q] such that (1 + κ − 1/κ) · P (q†) ≥
Payoff

[
EX‡].

Proof. Let w∗ be the expected budget and let p̄ = max{w∗, pq}. Let q̄ be the quantile

corresponding to value p̄ and let q† = argmaxq′≤q P (q′). Thus P (q̄) ≤ P (q†). Moreover, by

the construction of the decomposition, the per-unit price in EX‡ is larger than p̄. Similar to

the proof of Lemma 15, we only consider the types with value at least p̄.

Let Payoffw

[
τ ‡w
]
be the expected revenue of providing the allocation-payment function

τ ‡w in EX‡ to the types with budget w; and let Payoffw[p] be the expected revenue of

posting price p to the types with budget w. The following three facts allow comparison of

Payoff
[
EX‡] to P (q†):

(a) Posting the price p̄ makes the budget constraints bind for the types with budget at

most w∗, so Payoffw

[
τ ‡w
]
≤ Payoffw[p̄] for all w ≤ w∗.

(b) Payoffw

[
τ ‡w
]
≤ w

w∗Payoffw∗

[
τ ‡w
]
for all w ≥ w∗. This is because if the type (v, w∗)

pays her budget w∗ (i.e., the budget constraint binds), her payment is a (w/w∗)-

approximation to the payment from the type (v, w), since the type (v, w) pays at

most w. Moreover, if the type (v, w∗) pays less than her budget w∗ (i.e., the unit-

demand constraint binds, or the value binds), her allocation is equal to the allocation

from the type (v, w) for w ≥ w∗. Hence, their payments are the same.

(c) Since the revenue of posting price p̄ to an agent with budget w∗ is at most the revenue to

an agent with budget w > w∗; with the assumption that budgets exceed the expectation
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w∗ with probability at least 1/κ, it implies that

Payoffw∗ [p̄] ·
1

κ
≤ E

[
Payoffw[p̄]

∣∣∣ w ≥ w∗
]
·Pr[w ≥ w∗] ≤ P (q̄).

We upper bound the revenue of EX‡ as follows,

Payoff
[
EX‡] = ∫ w∗

¯
w

Payoffw

[
τ ‡w
]
dG(w) +

∫ w̄

w∗
Payoffw

[
τ ‡w
]
dG(w)

≤
∫ w∗

¯
w

Payoffw[p̄] dG(w) +

∫ w̄

w∗

w

w∗Payoffw∗

[
τ ‡w
]
dG(w)

≤ (1− 1

κ
)P (q̄) +

∫ w̄

w∗ wdG(w)

w∗ Payoffw∗ [p̄]

≤ (1− 1

κ
)P (q̄) +Payoffw∗ [p̄] ≤ (1 + κ− 1

κ
)P (q†)

where the first inequality is due to facts (a) and (b); in the second inequality, the first term

is due to Pr[w ≤ w∗] ≤ 1− 1/κ, the revenue Payoffw[p̄] is monotone increasing in w, and by

definition
∫ w̄

¯
w
Payoffw[p̄] dG(w) = P (q̄), and the second term is due to fact (a); and the last

inequality is due to P (q̄) ≤ P (q†) and fact (c).

Lemma 18. For a single agent with private-budget utility, independently distributed value

and budget, when pq ≤ w∗, there exists q† ≤ q such that the price-posting revenue from q† is

a (2κ− 1)-approximation to the revenue from EX§, i.e., (2κ− 1)P (q†) ≥ Payoff
[
EX§].

Proof. Let q† = argmaxq′≤q P (q′). Suppose the support of the budget distribution is from

[
¯
w, w̄]. Let p̃ be the price larger than the market clearing price pq and smaller than the

expected budget w∗ that maximizes revenue without the budget constraint. Consider the

following calculation with justification below.

Payoff
[
EX§] = ∫ w∗

¯
w

Payoffw

[
τ §w
]
dG(w) +

∫ w̄

w∗
Payoffw

[
τ §w
]
dG(w)

(a)

≤
∫ w∗

¯
w

Payoffw∗

[
τ §w
]
dG(w) +

∫ w̄

w∗

w

w∗Payoffw∗

[
τ §w
]
dG(w)

(b)

≤
∫ w∗

¯
w

Payoffw∗ [p̃] dG(w) +

∫ w̄

w∗

w

w∗Payoffw∗ [p̃] dG(w)

(c)

≤ (2− 1

κ
)Payoffw∗ [p̃]

(d)

≤ (2κ− 1)Payoff[p̃]
(e)

≤ (2κ− 1)P (q†).

56



Inequality (a) holds because given the allocation payment function τ §w, the revenue only

increases if we increase the budget to w∗, i.e., Payoffw

[
τ §w
]
≤ Payoffw∗

[
τ §w
]
for any w ≤ w∗.

Moreover, for any w > w∗, given the allocation payment function τ §w, the revenue is either

the same for budget w and w∗, or the budget binds for agent with expected budget w∗.

Since the revenue from agent with budget w is at most w, we know that Payoffw

[
τ §w
]
≤

w/w∗ · Payoffw∗

[
τ §w
]
. Note that for allocation payment rule τ §w, per-unit prices are larger

than the market clearing price pq and smaller than the expected budget w∗, and budget

does not bind for agents with budget w∗. Therefore, by definition, the optimal per-unit

price in this range is p̃, Payoffw∗

[
τ §w
]
≤ Payoffw∗ [p̃] and inequality (b) holds. Inequality

(c) holds because
∫ w∗

¯
w

dG(w) ≤ 1 − 1/κ by the assumption that the probability the budget

exceeds its expectation is at least κ, and
∫ w̄

w∗
w
w∗dG(w) ≤ 1. Inequality (d) holds because

Payoffw∗ [p̃] ≤ κ · Payoff[p̃] for any randomized prices p̃ according to Cheng et al. (2018).

Inequality (e) holds by the definition of the price-posting revenue curve P and quantile q†,

the fact that price p̃ is larger than the market clearing price pq.

Proof of Proposition 9. Let q† = argmaxq′≤q P (q′). Combining Lemma 14, 17 and 18, we

have

Payoff[EX] ≤ Payoff
[
EX†]+Payoff

[
EX‡]+Payoff

[
EX§] ≤ (1 + 3κ− 1/κ)P (q†).

C Tie-breaking Rules

In Algorithm 1, it is possible that based on the tie-breaking rule of pricing-based mechanism,

agent i may not receive the item if her quantile equals the threshold quantile. In this case,

the probability of agent i with type ti for winning an item when others have quantiles q−i

can be strictly smaller than d(ti, p
q̂i). Denote this probability as zi(ti, q−i). In this case, the

payment of agent i with type ti in mechanism M is pq̂i ·zi(ti, q−i) regardless of the allocation.

Note that based on our construction, the marginal quantile for each agent is drawn from

uniform distribution in [0, 1]. Therefore, tie occurs with measure zero and hence the expected

payoff of mechanism M for non-linear agents is not affected.

Now it is sufficient to show that both DSIC and IIR properties holds in mechanism M
for non-linear agents hold even for the measure zero event that

zi(ti, q−i) < d(ti, p
q̂i).

Note that for each agent i with type ti, her quantile is drawn from cumulative distribution

function H ti
i . Therefore, such event happens only if distribution H ti

i has a point mass at
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threshold quantile q̂i. Moreover,

zi(ti, q−i) = lim
q→q̂−i

d(ti, p
q).

Since the demand correspondence is upper hemi-continuous (Assumption 1), lottery zi(ti, q−i)

is also a best response of agent i with type ti given market clearing price pq̂i . Therefore, the

constructed mechanism is also DSIC and IIR for the measure zero event.
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