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Abstract

We study auctions that are robust at any scale, i.e., they can be applied for selling

both expensive and cheap items and achieve the best multiplicative approximations of

the optimal revenue in worst case. The optimal mechanism randomizes between selling

at the second-price and a 2.45 multiple of second-price. Thus, haggling is optimal for

robustness to scale.
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1 Introduction

In many markets, it is customary to implement fixed proportional transaction fees regardless of the

scale of the commodity. For instance, in real estate, agents typically charge a commission fee of

around 6% regardless of the sale price of the house. Similarly, in digital application markets, Apple

Store imposes a 30% service fee and Google Play charges a 15% service fee for each app purchase,

irrespective of the app’s price. Motivated by this feature of markets, we consider the design of

auctions that are resilient to scale, i.e., that achieve a favorable revenue guarantee approximating

the optimal revenue in a multiplicative manner.
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We study a robust analysis framework in which the principal designs auctions that perform

well at all scales (Hartline and Roughgarden, 2008). In this framework, the principal seeks an

auction that is independent of the distribution over agents’ values and, specifically, the scale of the

distribution. The goal is to minimize the multiplicative approximation of the optimal mechanism

in worst-case over a family of possible distributions.1

We study the single-item auction in a symmetric environment where the buyers’ values are

drawn independently and identically from a regular distribution.2 For regular distributions, if the

distribution is known by the principal, the second price auction with monopoly reserve is Bayesian

optimal (Myerson, 1981). If the regular distribution is unknown, Bulow and Klemperer (1996) show

that by adding an additional buyer, the seller can extract at least the optimal revenue (without

the additional buyer) using the second-price auction. A corollary of this result is that with a fixed

market size of n buyers, the second-price auction attains at least 1 − 1
n fraction of the optimal

revenue. Thus, in large markets where the number of buyers converges to infinity, the second-

price auction is asymptotically optimal, while in small markets, the multiplicative gap between the

optimal revenue and the second-price auction can be as bad as 2. Is the second-price auction, via

this corollary of Bulow and Klemperer, the best scale-robust auction?

In this paper, we focus on the design of optimal scale-robust mechanisms in small markets.

In particular, we focus on the extreme case proposed by Dhangwatnotai et al. (2015) where there

are only two buyers. The restriction to small markets is consistent with our motivation of robust

analysis. Unlike in large markets, where sellers can rely on abundant historical data to accurately

estimate the valuation distributions of buyers, such data is insufficient in small markets. Therefore,

a seller with limited information often find it natural to adopt the scale-robust approach for selling

the goods. When there are only two buyers, Allouah and Besbes (2018) show that the second-

price auction is indeed scale-robust optimal if the valuation distribution of the buyers satisfy the

monotone hazard rate condition (MHR). However, Fu et al. (2015) show that the seller can improve

her worst case approximation guarantee by randomly marking up the second-price if the valuation

distribution only satisfies the regularity condition (which is weaker than MHR). The main intuition

is that without MHR, the worst-case valuation distribution may be too heavy-tailed, and hence the

seller benefits from randomization to hedge between that case that second-price auction is optimal

and the case that the monopoly price is much higher than the second-price.

We identify the optimal scale-robust and dominant strategy incentive compatible (DSIC) mech-

anism for regular valuation distributions when there are two buyers,3 which answers a major ques-

tion left open from Dhangwatnotai et al. (2015), Fu et al. (2015), and Allouah and Besbes (2018).

The optimal mechanism is a mixture between the second-price auction and the auction where these

1This analysis framework is known as prior-independent approximation in the computer science literature
following Hartline and Roughgarden (2008)

2A distribution is regular if its corresponding virtual value function is non-decreasing (Myerson, 1981).
3We show that our proposed mechanism is optimal among mechanisms that satisfy a scale-invariance

assumption. We conjecture that even mechanisms without scale-invariance cannot outperform our proposed
mechanism. See Allouah and Besbes (2018) for a more detailed discussion on the scale-invariance assumption.
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prices are marked up by a factor of about 2.45.4 Our result shows that haggling is scale-robust

optimal, which contrasts with the Bayesian optimality of no-haggling (Riley and Zeckhauser, 1983).

Note that the restriction to DSIC mechanisms is not without loss of generality (e.g., Caillaud and

Robert, 2005). However, we aim to design auctions that are robust to the beliefs of all parties,

and DSIC mechanisms provide max-min optimal revenue guarantees over worst case beliefs of the

buyers (Chung and Ely, 2007).

The robust analysis framework in this paper is multiplicative approximation, i.e, the worst-case

ratio between the performance of the Bayesian optimal mechanism which knows the distribution,

and the performance of the designed mechanism. This robustness measure is not standard in the

economic literature for mechanism design where max-min optimal (e.g., Bergemann and Schlag,

2011; Carroll, 2017; Carrasco et al., 2018; Carroll and Segal, 2019) or min-max regret (e.g., Berge-

mann and Schlag, 2011; Guo and Shmaya, 2019, 2022) are commonly adopted. To understand

robustness to scale, neither of these prior frameworks can be applied as they give trivial solutions.

In particular, the max-min optimal mechanism would focus on the smallest scale, which is where

the performance is the lowest. Guarantees for the smallest scale would not translate to good perfor-

mance at larger scales where there is much more to gain. On the other hand, the optimal min-max

regret is achieved at large scales where there is the most to lose, and gives at small scales only

the trivial guarantee that performance is non-negative. When the range of scales required in the

robustness analysis is taken to the lower or upper limit, respectively, these frameworks provide only

trivial guarantees.5 In contrast, mechanisms with optimal worst-case approximation ratio provide

the same good performance guarantee at all scales. Further comparison of robustness frameworks

can be found in Appendix B.

1.1 Related Work

The scale-robust analysis framework gives a natural approach of identifying the robustly optimal

mechanism. Previous literature has only identified optimal mechanisms in environments that are

special cases of the fully general problem. Hartline and Roughgarden (2014) gave the optimal

mechanism for revenue maximization in the sale of a single item to a single agent with value

from a bounded support where the optimal mechanism posts a randomized price. For revenue

maximization in the sale of an item to one of two agents with values drawn from an i.i.d. regular

distribution, Dhangwatnotai et al. (2015) show that the second price auction is a 2-approximation.

Fu et al. (2015) gave a randomized mechanism showing that this factor of 2 is not tight. Upper and

lower bounds on this canonical problem were improved by Allouah and Besbes (2018) to be within

[1.80, 1.95] for DSIC mechanisms. The main result of our paper is to identify the optimal scale-

4An alternative view of the optimal mechanism is that the winning agent only receives the full item if his
bid is sufficiently high compared to the second highest bid, and receives a “damaged” item, or equivalently
a partial allocation of the item, if his bid is close to the second highest bid.

5Any mechanism is max-min optimal and min-max regret optimal since the optimal max-min value is 0
while the optimal min-max regret is unbounded.
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robust mechanism for this environment with a factor of about 1.91.6 For this two agent problem

with i.i.d. values from a distribution in the subset of regular distributions that further satisfy a

monotone hazard rate condition, Allouah and Besbes (2018) show that the second-price auction is

scale-robust optimal.

The restriction to DSIC mechanisms has the desirable property that agents’ behaviors and the

expected revenue in DSIC mechanisms do not rely on agents’ information about each other, and the

set of DSIC mechanisms is equivalent to the set of ex post implementable mechanisms (Bergemann

and Morris, 2005). Without the restriction to DSIC mechanisms, Caillaud and Robert (2005) use an

ascending auction in virtual value space to implement the Bayesian optimal mechanism. A critic for

such implementation is that this mechanism takes the common knowledge assumption too literally

and it is impractical for real-world applications. Feng and Hartline (2018) and Feng et al. (2021)

show that there exist simple and practical non-incentive-compatible mechanisms that outperform

the optimal DSIC mechanism, and further study of non-incentive-compatible mechanisms is still

warranted in scale-robust analysis framework.

Our paper relates to the auction design literature with max-min optimal and min-max regret

objectives when the principal is ignorant of the value distribution. For max-min optimization,

Bergemann and Schlag (2011) and Carrasco et al. (2018) consider the design of the robustly optimal

mechanism in the single-item, single-buyer setting. Bachrach and Talgam-Cohen (2022) extend

the model to two i.i.d. buyers and the model with correlated valuations is considered in Che

(2022). Both papers identify the second-price auction with random markups as the max-min

optimal mechanism, where the distribution over markups rely on the expected value of each buyer.

By contrast, the information about the expected value is not available to the principal in our model,

and there exists a fixed distribution over markups that achieves the optimal approximation ratio.

For min-max regret optimization, the optimal distribution over prices for the single-item, single-

buyer setting is characterized in Bergemann and Schlag (2008, 2011). Anunrojwong et al. (2022)

show that a second-price auction with random reserve prices is robustly optimal when there are

multiple agents even if the values of the agents can be correlated.

In contrast, by focusing on multiplicative approximations, our mechanism provides non-trivial

and interesting insights on designing optimal robust mechanisms, i.e., haggling is robust to scale.

Moreover, compared to max-min optimal which is often too pessimistic, and the min-max regret

which is often too optimistic, multiplicative approximation maintains a good balance between

these two situations. In Appendix B, we provide an illustration for why worst-case multiplicative

approximation can be viewed as a measure that lies between the pessimistic and optimistic extremes.

6The Allouah and Besbes (2018) lower bound of 1.80 was proved under the same additional assumption
of scale invariance as our lower bound of 1.91.
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2 Preliminaries

The principal sells a single item to n = 2 agents with private values v = (v1, v2). The agents have

linear utilities, i.e., agent i’s utility is vi xi − pi for allocation probability xi and expected payment

pi. Agents’ values are drawn independently and identically from a product distribution F = F ×F

where F will denote the cumulative distribution function of each agent’s value.

A mechanism M is defined by an ex post allocation and payment rule xM and pM which map

the profile of values v to a profile of allocation probabilities and a profile of payments, respectively.

We focus on mechanisms that are feasible, dominant strategy incentive compatible, and individually

rational:

• For selling a single item, a mechanism is feasible if for all valuation profiles, the allocation

probabilities sum to at most one, i.e., ∀v,
∑

i x
M
i (v) ≤ 1.

• A mechanism is dominant strategy incentive compatible if no agent i with value vi prefers

to misreport some value z: ∀v, i, z, vi x
M
i (v) − pMi (v) ≥ vi x

M
i (z,v−i) − pMi (z,v−i) where

(z,v−i) denotes the valuation profile with vi replaced with z.

• A mechanism is individually rational if truthful reporting always leads to non-negative utility:

∀v, i, vi x
M
i (v)− pMi (v) ≥ 0.

Denote a family of feasible mechanisms by M and a mechanism in this family by M . The ex-

pected revenue of mechanism M when the value profile is v is denoted by M(v). When evaluating

the revenue of a mechanism in expectation over the distribution, we adopt the short-hand nota-

tion M(F ) = Ev∼F [M(v)]. Given a distribution F and a family of mechanisms M, the optimal

mechanism, denoted by OPTF , maximizes the expected revenue of the principal:

OPTF = argmax
M∈M

M(F ).

In this paper, we focus on the model where the principal is ignorant of the true distribution

over values. Instead, the principal knows that the true distribution belongs to a family F and

designs a mechanism that minimizes the worst case approximation ratio to the optimal revenue

for distributions within F . This scale-robust analysis framework is also referred to as the prior-

independent mechanism design (Hartline and Roughgarden, 2008).

Definition 1. The scale-robust analysis framework is given by a family of mechanisms M and a

family of distributions F and solves the program

β ≜ min
M∈M

max
F∈F

OPTF (F )

M(F )
. (β)

A mechanism’s revenue can be easily and geometrically understood via the marginal revenue

approach of Myerson (1981) and Bulow and Roberts (1989). For distribution F , the quantile q
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of an agent with value value v denotes how strong that agent is relative to the distribution F .

Specifically, quantiles are defined by the mapping QF (v) = Prz∼F {z ≥ v}. Denote the mapping

back to value space by VF , i.e., VF (q) is the value of the agent with quantile q. A single agent

price-posting revenue curve P (q) gives the revenue of posting a price such that the probability that

the agent accepts the price is q. For an agent with value distribution F , price VF (q) is accepted

with probability q, and its expected revenue is P (q) = q · VF (q). A single agent revenue curve

RF (q) gives the optimal revenue from selling to a single agent under the constraint that ex ante

sale probability is q. By Bulow and Roberts (1989), the revenue curve R is always concave, and it

coincides with the concave hull of the price-posting revenue curve P . In this paper, we focus on

the family of regular distributions. Let FReg be the family of i.i.d. regular value distribution.

Assumption 1 (Regularity). A distribution F is regular if the price-posting revenue curve P is

concave.7

An immediate implication for regular distribution is that the price-posting revenue curve co-

incides with the revenue curve, i.e., P = R. The optimal mechanism for a single agent posts the

monopoly price VF (q̄) which corresponds to the monopoly quantile q̄ = argmaxq RF (q). In multi-

agent settings, the expected revenue of any multi-agent mechanism M equals its expected surplus

of marginal revenue.

Lemma 1 (Myerson, 1981). Given any incentive-compatible mechanism M with allocation rule

xM (v), the expected revenue of mechanism M for agents with regular distribution F is equal to its

expected surplus of marginal revenue, i.e.,

M(F ) =
∑

i
Ev∼F

[
pMi (v)

]
=
∑

i
Ev∼F

[
R′

F (QF (vi)) · xMi (v)
]
.

Corollary 1 (Myerson, 1981). For i.i.d., regular, single-item environments, the optimal mechanism

OPTF is the second-price auction with anonymous reserve equal to the monopoly price.

The following lemma from Dhangwatnotai et al. (2015) follows from Lemma 1 and gives a

geometric understanding of the expected revenues of second-price auction and optimal mechanism

in two-agent settings. The geometry is illustrated in Figure 1

Lemma 2 (Dhangwatnotai et al., 2015). In i.i.d. two-agent single-item environments,

• the expected revenue of second-price auction is twice the area under the revenue curve;

• the expected revenue of the optimal mechanism is twice the area under the smallest monotone

concave upper bound of the revenue curve.

7An equivalent definition for regularity is that the virtual value function ϕ(v) = v − 1−F (v)
f(v) is non-

decreasing in v.
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R(q̄)

0 1q̄

Figure 1: The solid black curve is the revenue curve R(q) for the single-agent setting. The
gray area is the area under the smallest monotone concave upper bound of the revenue curve,
which is half of the optimal revenue.

3 Optimal Scale-Robust Mechanisms

We solve for the optimal mechanism that is robust to scale for the revenue objective with the

restriction to

• the family of i.i.d. regular value distribution FReg; and

• the family of feasible, incentive compatible, individually rational, and scale-invariant mech-

anisms MSI.

The following discussion motivates these restrictions. There do not exist good mechanisms

that is robust to scale for general asymmetric and irregularly distributed agent values. Almost

all papers on the scale-robust analysis framework restrict to i.i.d. agents. Almost all papers on

revenue maximization under the scale-robust analysis framework restrict to regular distributions.

The restriction to feasible and individually rational mechanisms is required to have a sensible

optimization problem. The restriction to incentive compatible mechanisms is made in almost all

papers on the scale-robust analysis framework, with an exception of Feng and Hartline (2018) where

it is shown that the restriction can be lossy. The remaining condition which we formally define

below is scale invariance.

Definition 2. Given any incentive-compatible mechanism M with allocation rule xM (v), mech-

anism M is scale invariant if for each agent i, valuation profile v and any constant α > 0,

xMi (α · v) = xMi (v). Scale invariance further implies M(a · v) = a ·M(v).

Allouah and Besbes (2018) prove that the optimal scale-robust mechanism among a broad family

of mechanisms is scale invariant. They show that if limα→0 xi(α · v) always exists for mechanisms

in the family, then the optimal scale-robust mechanism is scale invariant. They conjecture that this

weaker assumption is without loss; if true, the mechanism we identify as the optimal mechanism

among scale-invariant mechanisms is also scale-robust optimal among all mechanisms.

Given the restriction to scale-invariant mechanisms, it will be sufficient to consider distributions

that are normalized so that the single-agent optimal revenue is maxq R(q) = 1. An important
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1

0 1q̄

1

0 1q̄ q̄′

1/rq̄

Figure 2: The left hand side is the revenue curve for triangle distribution Triq̄ and the
right hand side is the revenue curve for quadrilateral distribution Qrq̄,q̄′,r. The definition of
quadrilateral distribution Qrq̄,q̄′,r will be formally introduced later in Section 3.2.

family of distributions with revenue normalized to 1 are normalized triangle distributions, which

have revenue curves shaped like triangles (Figure 2).

Definition 3. A normalized triangle distribution with monopoly quantile q̄, denoted Triq̄, is defined

by the quantile function

QTriq̄(v) =

 1
1+v(1−q̄) v ≤ 1/q̄

0 otherwise.

The triangulation of a normalized distribution with monopoly quantile q̄ is Triq̄. The family of

normalized triangle distributions is FTri = {Triq̄ : q̄ ∈ [0, 1]}.

Intuitively, for any monopoly quantile q̄, normalized triangle distributions is the distribution

that is first order stochastically dominated by any other distribution with monopoly quantile q̄.

That is, in the single-agent problem, normalized triangle distributions minimize the expected rev-

enue of any given mechanism while maintaining the optimal revenue and monopoly quantile un-

changed.

The following family of (stochastic) markup mechanisms is (essentially, in n = 2 agent en-

vironments) the restriction to the family of lookahead mechanisms (Ronen, 2001) that are scale

invariant. Notice that the second-price auction is the 1-markup mechanism M1.

Definition 4. For any parameter r ≥ 1, the r-markup mechanism Mr identifies the agent with the

highest-value (and ties broken uniformly at random) and offers this agent r times the second-highest

value. A stochastic markup mechanism draws r from a given distribution on [1,∞). The family of

stochastic markup mechanisms is MSMKUP.

Theorem 1. For i.i.d., regular, two-agent and single-item environments, the optimal scale-invariant,

incentive-compatible mechanism for optimization program (β) is Mα∗,r∗ which randomizes over the

second-price auction M1 with probability α∗ and r∗-markup mechanism Mr∗ with probability 1−α∗,

where α∗ ≈ 0.806 and r∗ ≈ 2.447. The worst-case regular distribution for this mechanism is triangle

distribution Triq̄∗ with q̄∗ ≈ 0.093 and its approximation ratio is β ≈ 1.907.
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In the two sections below we prove this theorem with the following main steps.

1. We characterize the optimal scale-robust mechanism under the restriction to stochastic

markup mechanisms and triangle distributions. This restricted program has the same so-

lution as is given in Theorem 1.

2. We show that the stochastic markup mechanism and the triangle distribution in Theorem 1

are mutual best responses among the more general families of scale-invariant mechanisms and

regular distributions. This step poses a major challenge in the paper, requiring innovative

reduction techniques that build upon the concept of revenue curves.

Combining these results gives the theorem.

3.1 Stochastic Markup Mechanisms versus Triangle Distributions

In this section we characterize the solution to the scale-robust analysis framework restricted to

stochastic markup mechanisms and triangle distributions. We first define a general family of trun-

cated distributions, which will be important subsequently in the proof. Recall that for scale-

invariant mechanisms, it is without loss to normalize the distributions to have monopoly revenue

one.

Definition 5. A distribution is truncated if the highest-point in its support is the monopoly price

(typically a point mass). The truncation of a distribution is the distribution that replaces every

point above the monopoly price with the monopoly price. The family of truncated distributions is

denoted FTrunc.

The three lemmas below give formulae for the revenue of the optimal mechanism, the second-

price auction, and non-trivial markup mechanisms for triangle distributions. The formula for

revenue of markup mechanisms is discontinuous at r = 1. Thus, in our discussion we will distinguish

between the second-price auction M1 and non-trivial markup mechanism Mr for r > 1.

Lemma 3. For i.i.d., normalized truncated, two-agent, single-item environments, the optimal

mechanism posts the monopoly price and obtains revenue 2 − q̄ where q̄ is the probability that

an agent’s value equals the monopoly price.

Proof. The smallest monotone concave function that upper bounds the revenue curve is a trapezoid;

its area is q̄/2 + 1 − q̄. The optimal revenue from two agents, by Lemma 2, is twice this area, i.e.,

2− q̄.

Lemma 4. The revenue of the second-price auction M1 for distribution Triq̄ is 1, i.e., M1(Triq̄) = 1.

Proof. By Lemma 2, the revenue is twice the area under the revenue curve. That area is 1/2; thus,

the revenue is 1.
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1 52.45
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Figure 3: The figure on the left plots, as a function of q̄, the approximation ratio APX1(q̄)
of the second-price auction M1 against triangle distribution Triq̄ (straight line), and the
approximation ratio APX∗(q̄) of the optimal non-trivial markup mechanism against triangle
distribution Triq̄ (curved line). These functions cross at q̄∗ = 0.0931057. The figure on the
right plots the revenue of the r markup mechanism Mr on triangle distribution Triq̄∗ as a
function of markup r, i.e., Mr(Triq̄∗). Notice that, by choice of q̄∗, the optimal non-trivial
markup mechanism has the same revenue as the second-price auction.

Lemma 5. The revenue of the r-markup mechanisms Mr on triangle distribution Triq̄, for r ∈
(1,∞) and q̄ ∈ [0, 1), is

Mr(Triq̄) =
2r

(1− q̄)(r − 1)

 1− q̄

1− q̄ + q̄r
+

ln
(

r
1−q̄+q̄r

)
1− r

 .

The proof of Lemma 5 is straightforward and given in Appendix A. These lemmas allow us

to numerically compute the expected revenues and approximation ratios of stochastic markup

mechanisms given triangular distributions, which are illustrated in Figure 3.

The following theorem characterizes the optimal stochastic markup mechanism that is robust

to scale against triangle distributions. The parameters of this optimal mechanism are the solution

to an algebraic expression (cf. Lemma 5) that we are unable to solve analytically. Our proof will

instead combine numeric calculations of select points in parameter space with theoretical analysis

to rule out most of the parameter space. For the remaining parameter space, we can show that

the expression is well-behaved and, thus, numeric calculation can identify near optimal parameters.

Discussion of this hybrid numerical and theoretical analysis can be found in Appendix A.

Theorem 2. For i.i.d., triangle distribution, two-agent, single-item environments, the optimal

stochastic markup mechanism for optimization program (β) is Mα∗,r∗ which randomizes over the

second-price auction M1 with probability α∗ and r∗-markup mechanism Mr∗ with probability 1−α∗,

where α∗ ≈ 0.806 and r∗ ≈ 2.447. The worst-case distribution for this mechanism is the triangle

distribution Triq̄∗ with q̄∗ ≈ 0.093 and its approximation ratio is β ≈ 1.907.

Intuitively, the optimization program (β) can be viewed as a zero-sum game between the de-

signer and an adversary, where the designer chooses a mechanism M , the adversary chooses a
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worst-case distribution F (and its induced revenue curve), and the payoff of the designer is the

approximation ratio OPTF (F )/M(F ) (see Definition 1). The optimal solution to the optimization

program (β) is essentially a Nash equilibrium strategy between the designer and the adversary in

this zero-sum game.

The high level approach of this proof is to identify the triangle Triq̄∗ for which the designer is

indifferent between the second price auction M1 and the optimal (non-trivial) markup mechanism,

denoted Mr∗ . For such a distribution Triq̄∗ , the designer is also indifferent (in minimizing the

approximation ratio) between any mixture over M1 (with probability α) and Mr∗ (with probability

1 − α), and all other r-markup mechanisms for r ̸∈ {1, r∗} are inferior (see Figure 3). We then

identify the α∗ for which the adversary’s best response (in maximizing the approximation ratio) to

Mα∗,r∗ is the distribution Triq̄∗ . This solution of Mα∗,r∗ and Triq̄∗ is a Nash equilibrium between

the designer and adversary and, thus, it solves the optimization problem. The parameters can be

numerically identified as α∗ ≈ 0.80564048, r∗ ≈ 2.4469452, q̄∗ ≈ 0.0931057, and the approximation

ratio is β ≈ 1.9068943.

3.2 Mutual Best-response of Stochastic Markup Mechanisms and

Triangle Distributions

In this section we show that stochastic markup mechanisms are a best response (for the designer)

to truncated distributions and that truncated distributions are a best response (for the adversary)

to stochastic markup mechanisms. Moreover, we show that among truncated distributions, triangle

distributions are the best for the adversary. Triangle distributions are known to be worst case for

other questions of interest in mechanism design, e.g., approximation by anonymous reserves and

anonymous pricings (Alaei et al., 2018). The proof that triangle distributions are worst-case for

two-agent revenue maximization under the scale-robust analysis framework is significantly more

involved than these previous results.

3.2.1 Best Response of Stochastic Markup Mechanisms

Lemma 6. For i.i.d., two-agent, single-item environments and any scale-invariant incentive-

compatible mechanism M , there is a stochastic markup mechanism M ′ with (weakly) higher revenue

(and weakly lower approximation ratio) on every truncated distribution F . I.e., M ′(F ) ≥ M(F ).

Proof. In a stochastic markup mechanism the price of the higher agent is a stochastic multiplicative

factor r ≥ 1 of the value of the lower agent (with ties broken randomly). To prove this theorem

we must argue that (a) if the agents are not tied, then revenue improves if the lower agent loses,

(b) if the agents are tied, then revenue is unaffected by random tie-breaking, and (c) any such

scale-invariant mechanism looks to the higher-valued agent like a stochastic posted pricing with

price that is a multiplicative factor (at least one) of the lower-valued agent’s value.
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To see (a), note that the revenue of the mechanism is equal to its virtual surplus (Lemma 1)

and for triangle distributions only the highest value in the support of the distribution has positive

virtual value. Thus, any mechanism that sells to a strictly-lower-valued agent can be improved by

not selling to such an agent.

To see (b), note that for any i.i.d. distribution the revenue of any mechanism is invariant to

randomly permuting the identities of the agents. Thus, we can assume random tie-breaking.

To see (c), recall that the family of incentive-compatible single-agent mechanisms is equivalent

to the family of random price postings. Once we have ruled out selling to the lower-valued agent, the

mechanism is a single-agent mechanism for the higher-valued agent (with price at least the lower-

valued agent’s value. By the assumption that the mechanism is scale invariant, the distribution of

prices offered to the higher-valued agent must be multiplicative scalings of the lower-valued agent’s

value.

3.2.2 Best Response of Triangle Distributions

Next we will give a sequence of results that culminate in the observation that for any regular

distribution and any stochastic markup mechanism with probability α at least 2/3 on the second-

price auction (which includes the optimal mechanism from Theorem 2) either the triangulation of

the distribution or the point mass Tri1 has (weakly) higher approximation ratio. As the notation

indicates, the point mass distribution Tri1 is a triangle distribution.

Lemma 7. For i.i.d., two-agent, single-item environments and any regular distribution F and

any stochastic markup mechanism M that places probability α ∈ [2/3, 1] on the second-price auc-

tion, either the triangulation of the distribution FTri or the point mass Tri1 has (weakly) higher

approximation ratio. I.e., max
{

OPT
FTri (F

Tri)

M(FTri)
,
OPTTri1

(Tri1)

M(Tri1)

}
≥ OPTF (F )

M(F ) .

To prove this lemma we give a sequence of results showing that for any regular distribution,

a corresponding truncated distribution is only worse; for any truncated distribution and a fixed

stochastic markup mechanism (that mixes over M1 and some Mr), a corresponding quadrilateral

distribution (based on r) is only worse; and for any quadrilateral distribution, a corresponding

triangle distribution (independent of r) is only worse. The theorem follows from combining these

results. The first step assumes that the probability that the stochastic markup mechanism places

on the second price auction is α ∈ [1/2, 1]; the last step further assumes that α ∈ [2/3, 1].

Best response of truncated distributions To begin, the following lemma shows that the

best response of the adversary to a relevant stochastic markup mechanism is a truncated distribu-

tion. Recall that by Fu et al. (2015) the optimal scale-robust mechanism is strictly better than a

2-approximation. On the other hand, any stochastic markup mechanism that places probability α

on the second-price auction M1 has approximation ratio at least 1/α. Specifically, on the (degener-

ate) distribution that places all probability mass on 1, a.k.a. Tri1, the approximation factor of such

12
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0 1q̄

1

0 1q̄

Figure 4: The illustration of the revenue decomposition of Lemma 8 forM on distribution F
and truncation F ′ for the optimal mechanism and second-price auction. The thin black line
on the left and right figures are the revenue curves corresponding to F and F ′, respectively.
The dashed area on the left represents OPT+ = SPA+ and the gray area on the left represents
OPT− = OPT′

−. The dashed area on the right represents OPT′
+ = SPA′

+ and the gray area
on the right represents SPA′

− = SPA−.

a stochastic markup mechanism is exactly 1/α. We conclude that all relevant stochastic markup

mechanisms place probability α > 1/2 on the second-price auction. Thus, this lemma applies to all

relevant mechanisms.

Lemma 8. For i.i.d., two-agent, single-item environments, any regular distribution F , and any

stochastic markup mechanism M that places probability α ∈ [1/2, 1] on the second-price auction;

either the truncation of the distribution F ′ or the point mass distribution Tri1 has (weakly) higher

approximation ratio. I.e., max
{

OPTF ′ (F ′)
M(F ′) ,

OPTTri1
(Tri1)

M(Tri1)

}
≥ OPTF (F )

M(F ) .

Proof. It can be assumed that the approximation of stochastic markup mechanism M on distribu-

tion F is at least 1/α (where α denotes the probability that M places on the second-price auction).

Notice that the revenue M on the point mass on 1 (a truncated distribution) is α and the optimal

revenue on this distribution is 1. If the approximation factor OPTF (F )/M(F ) is less than 1/α then the

point mass on 1 (a truncated distribution) achieves a higher approximation than F and the lemma

follows. For the remainder of the proof, assume that the approximation factor of mechanism M on

distribution F is more than 1/α.

View the stochastic markup mechanism M as a distribution over two mechanisms: the second-

price auction M1 with probability α, and M∗, a distribution over non-trivial markup mechanisms

Mr with r > 1, with probability 1− α. The optimal mechanism is OPTF . Decompose the revenue

from distribution F across these three mechanisms as follows. Denote the monopoly quantile of F

by q̄. See Figure 4.

• OPT+ and OPT− give the expected revenue of the optimal mechanism from agents with

values above and below the monopoly price (below and above the monopoly quantile q̄).
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• SPA+ = OPT+ and SPA− give the expected revenue of the second-price auction M1 from

agents with values above and below the monopoly price.

• MKUP+ and MKUP− give the expected revenue of the stochastic markup mechanism M∗

from prices (strictly) above and (weakly) below the monopoly price.

Consider truncating the distribution F at the monopoly quantile q̄ to obtain F ′ ∈ FTrunc. Define

analogous quantities (with identities):

• OPT′
+ < OPT+ and OPT′

− = OPT−.

Identities follow from the geometric analysis of Lemma 2.

• SPA′
+ = OPT′

+ and SPA′
− = SPA−.

Identities follow from the geometric analysis of Lemma 2.

• MKUP′
+ = 0 and MKUP′

− = MKUP−.

Values above the monopoly price are not supported by the truncated distribution, so the

revenue from those prices is zero. On the other hand, prices (weakly) below the monopoly

price are bought with the exact same probability as the cumulative distribution function F ′

and F are the same for these prices.

The remainder of the proof follows a straightforward calculation. Write the approximation ratio of

M on distribution F (using the given identities) and rearrange:

OPTF (F )

M(F )
=

OPT++OPT−
α (OPT++SPA−) + (1− α) (MKUP++MKUP−)

=
OPT++ [OPT−]

α OPT++ [α SPA−+(1− α) (MKUP++MKUP−)]

Since the approximation ratio on F is at least 1/α, the ratio of the first term in the numerator and

denominator is at most the ratio of the remaining terms [in brackets]:

1

α
=

OPT+

α OPT+
≤ [OPT−]

[α SPA−+(1− α) (MKUP++MKUP−)]

Now write the approximation ratio of M on truncation F ′ (using the given identities) and bound:

OPTF ′(F ′)

M(F ′)
=

OPT′
++ [OPT−]

α OPT′
++ [α SPA−+(1− α) MKUP−]

≥
OPT′

++ [OPT−]

α OPT′
++ [α SPA−+(1− α) (MKUP++MKUP−)]

≥ OPT++ [OPT−]

α OPT++ [α SPA−+(1− α) (MKUP++MKUP−)]

=
OPTF (F )

M(F )
.

14
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1/rq̄ 1

0 1q̄ q̄′
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Figure 5: The main two steps of Lemma 10 are illustrated. In the first step (right-hand
side), the revenue curves of distributions FTrunc (thin, solid, black) and F † (thick, dashed,
gray) are depicted. In the second step, the revenue curves of the distributions F † (thin,
solid, black) and FQr (thick, dashed, gray) are depicted. In both cases the revenue of the
r-markup mechanism is is higher on the thin, solid, black curve than the thick, dashed, gray
curve.

The calculation shows that, for any distribution F , the truncated distribution F ′ increases the

approximation factor of the stochastic markup mechanism. Thus, the worst-case distribution is

truncated.

Best response of quadrilateral distributions The next step is to show that, among trun-

cated distributions, the worst-case distribution for stochastic markup mechanisms are those with

quadrilateral-shaped revenue curves, i.e., ones that are piecewise linear with three pieces (see Fig-

ure 2). Recall that for a truncated distribution at monopoly quantile q̄, the upper bound of the

support is a point mass on 1/q̄.

Definition 6. A normalized quadrilateral distribution with parameters q̄, q̄′ and r with r ≥ 1 and
q̄r

q̄r+(1−q̄) ≤ q̄′≤ min{rq̄, 1}, denoted by Qrq̄,q̄′,r is defined by quantile function as:

QQrq̄,q̄′,r(v) =


q̄′

q̄′+vrq̄(1−q̄′) v < 1/rq̄

q̄′q̄(r−1)
vrq̄(q̄′−q̄)+(rq̄−q̄′)

1/rq̄ ≤ v ≤ 1/q̄

0 1/q̄ < v

The following lemma summarizes an analysis from Allouah and Besbes (2018) and is useful in

bounding the revenue from markup mechanisms.

Lemma 9 (Allouah and Besbes, 2018). Consider the r-markup mechanism, two i.i.d. regular agents

with value distribution F , quantile q̄′ corresponding to the monopoly price divided by r, and the

distribution F̃ that corresponds to F ironed on [q̄′, 1]: the virtual surplus from quantiles [q̄′, 1] is

higher for F than for F̃ .
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Proof. The proof of this lemma is technical and non-trivial. It is given in the proof of Proposition 4

of Allouah and Besbes (2018).

The next lemma reduces the worst case distribution from the family of truncated distributions

to the family of quadrilateral distributions. The reduction is illustrated in Figure 5, by showing

that ironing the revenue curves sequentially within [q̄, q̄′] and [q̄′, 1] decreases the revenue of the

stochastic markup mechanism. The optimal revenue is not affected because it is obtained using

a reserve price corresponding to the monopoly quantile q̄ and it is agnostic to the shape of the

revenue curve for q > q̄.

Lemma 10. For i.i.d., two-agent, single-item environments, any truncated distribution FTrunc,

and any stochastic markup mechanism Mα,r with probability α on the second-price auction M1

and probability 1 − α on non-trivial markup mechanism Mr; there is a quadrilateral distribution

FQr with the same optimal revenue and (weakly) lower revenue in Mα,r. I.e., OPTFQr(FQr) =

OPTFTrunc(FTrunc) and Mα,r(F
Qr) ≤ Mα,r(F

Trunc).

Proof. On any normalized truncated distribution with monopoly quantile q̄, the optimal revenue is

2−q̄ (Lemma 3). Thus, to prove the lemma it is sufficient to show that for any truncated distribution

FTrunc ∈ FTrunc with monopoly quantile q̄ there is a normalized quadrilateral distribution FQr ∈
FQr ⊂ FTrunc with monopoly quantile q̄ and lower revenue in Mα,r.

The quadrilateral distribution FQr is obtained by ironing FTrunc on [q̄, q̄′] and [q̄′, 1] where

quantile q̄′ satisfies VFTrunc(q̄) = r VFTrunc(q̄′). We consider an intermediary distribution F † that is

FTrunc ironed only on [q̄, q̄′]. See Figure 5. The proof approach is to show that Mα,r(F
Trunc) >

Mα,r(F
†) > Mα,r(F

Qr).

As Mα,r is a convex combination of the second-price auction M1 and the r-markup mechanism

Mr. It suffices to show the inequalities above hold for both auctions. In fact, the result holds for the

second-price auction from the geometric analysis of revenue of Lemma 2. The revenue of the second-

price auction for two i.i.d. agents is twice the area under the revenue curve. As the revenue curve

has strictly smaller area from FTrunc to F † to FQr, we have M1(F
Trunc) > M1(F

†) > M1(F
Qr).

Below, we analyze the r-markup mechanism Mr.

The following price-based analysis shows that Mr(F
Trunc) > Mr(F

†):

• The revenue from quantiles in [0, q̄] is unchanged.

These quantiles are offered prices from quantiles in [q̄′, 1]. The values of quantiles [0, q̄] and

[q̄′, 1] are the same for both distributions; thus, the revenue is unchanged.

• The revenue from quantiles in [q̄, q̄′] decreases.

These quantiles are offered prices from quantiles in [q̄′, 1]. For the distribution F † relative to

FTrunc: Values are lower at any quantile q ∈ [q̄, q̄′]; the distribution of prices (from quantiles

in [q̄′, 1]) is the same. Thus, revenue is lower.
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Figure 6: Illustrating the proof of Lemma 11, the difference of revenue for second price
auction M1 on revenue curves Rq̄′ and Rq̄′′ , which respectively correspond to quadrilateral
distributions Qrq̄,q̄′,r and Qrq̄,q̄′′,r, is equal to twice of the gray area, which is at least q̄′′ − q̄′.
Moreover, the difference of revenue for the r-markup mechanism Mr on revenue curves Rq̄′

and Rq̄′′ is at most 2(q̄′′ − q̄′).

• The revenue from quantiles in [q̄′, 1] is unchanged.

These quantiles are in [q̄′, 1] and are offered prices from quantiles in [q̄′, 1]. The distributions

are the same for these quantiles; thus, the revenue is unchanged.

The following virtual-surplus-based analysis shows that Mr(F
†) > Mr(F

Qr):

• The virtual surplus of quantiles in [0, q̄] is unchanged.

These quantiles have the same virtual values under the two distributions and the same prob-

ability of winning, i.e., 1− q̄′ (when the other agent’s quantile is in [q̄′, 1].

• The virtual surplus of quantiles in [q̄, q̄′] is decreased.

Their prices come from quantiles in [q̄′, 1] which are decreased; thus, their probabilities of

winning are increased. Their virtual values are negative, so these increased probabilities of

winning result in decreased virtual surplus.

• The virtual surplus of quantiles in [q̄′, 1] is decreased.

This result is given by Lemma 9.

Best response of triangle distributions We complete the proof of Lemma 7 by showing

that triangle distributions lead to lower revenue than quadrilateral distributions. The intuition of

the proof is illustrated in Figure 6. For any r > 1 and any stochastic markup mechanism Mα,r with

probability α ∈ [2/3, 1], consider a family of quadrilateral distributions Qrq̄,q̄′,r parameterized by q̄′.

The optimal revenue is again not affected by q̄′ while the revenue of Mα,r is monotone increasing

in q̄′. Thus the approximation ratio of Mα,r is maximized by minimal q̄′ for which the degenerate

quadrilateral Qrq̄,q̄′,r is a triangle.
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Lemma 11. For i.i.d., two-agent, single-item environments, normalized quadrilateral distribution

Qrq̄,q̄′,r, and stochastic markup mechanism Mα,r with probability α ∈ [2/3, 1] on the second-price

auction M1 and probability 1 − α on non-trivial markup mechanism Mr; the triangle distribution

Triq̄ has the same optimal revenue and (weakly) lower revenue in Mα,r. I.e., OPTTriq̄(Triq̄) =

OPTQrq̄,q̄′,r(Qrq̄,q̄′,r) and Mα,r(Triq̄) ≤ Mα,r(Qrq̄,q̄′,r).

Proof. By Lemma 3, the optimal revenues for quadrilateral distribution Qrq̄,q̄′,r and triangle dis-

tribution Triq̄ are the same (and equal to 2 − q̄). To show that the revenue of Mα,r is worse on

Triq̄ than Qrq̄,q̄′,r, it suffices to show that the revenue on Qrq̄,q̄′,r is monotonically increasing in q̄′.

Specifically the minimum revenue is when the quadrilateral distribution is degenerately equal to

the triangle distribution.

The proof strategy is to lower bound the partial derivative with respect to q̄′ of the revenues of

r-markup mechanism and the second-price auction for quadrilateral distributions Qrq̄,q̄′,r as

∂Mr(Qrq̄,q̄′,r)

∂q̄′
≥ −2, (1)

∂M1(Qrq̄,q̄′,r)

∂q̄′
≥ 1. (2)

Thus, for mechanism Mα,r with α ≥ 2/3, we have

∂Mα,r(Qrq̄,q̄′,r)

∂q̄′
≥ α− 2(1− α) ≥ 0

and revenue is minimized with the smallest choice of q̄′ for which quadrilateral distribution Qrq̄,q̄′,r

is degenerately a triangle distribution. It remains to prove bounds (1) and (2).

For simplicity, since in this section the only parameter we change in distribution Qrq̄,q̄′,r is q̄′,

we introduce the notation Pq̄′(v) to denote the revenue of posting price v, and Vq̄′(q) to denote the

price v given quantile q when the distribution is Qrq̄,q̄′,r. The proof is illustrated in Figure 6.

We now prove bound (1). For any pair of quadrilateral distributions Qrq̄,q̄′,r and Qrq̄,q̄′′,r with

q̄′′ ≥ q̄′, we analyze the difference in revenue for posting price r · v(2).

Mr(Qrq̄,q̄′′,r)−Mr(Qrq̄,q̄′,r)

= 2

∫ 1

q̄′′
Pq̄′′(r · Vq̄′′(q)) dq − 2

∫ 1

q̄′
Pq̄′(r · Vq̄′(q)) dq

≥ 2

∫ 1

q̄′′
Pq̄′′(r · Vq̄′′(q)) dq − 2

∫ 1

q̄′′
Pq̄′(r · Vq̄′(q)) dq − 2(q̄′′ − q̄′)

≥ 2

∫ 1

q̄′′
Pq̄′(r · Vq̄′′(q)) dq − 2

∫ 1

q̄′′
Pq̄′(r · Vq̄′(q)) dq − 2(q̄′′ − q̄′)

≥ −2(q̄′′ − q̄′).

The first equality is constructed as follows: Both agents face a random price that is r times the

18



value of the other agent who has quantile q drawn from U [0, 1]. The revenue from this price is given

by, e.g., Pq̄′(r · Vq̄′(q)) which is 0 when q ≤ q̄′. The first inequality holds because Pq̄′(r · Vq̄′(q)) ≤ 1

for any quantile q. The second inequality holds since the revenue from revenue curve Pq̄′′ is weakly

higher than from revenue curve Pq̄′ for any value v. The third inequality holds because (a) the

prices of the first integral are higher than the prices of the second integral, i.e., Vq̄′′(q) ≥ Vq̄′(q) for

every q, and (b) because these prices are below the monopoly price for distribution Qrq̄,q̄′′,r and so

higher prices give higher revenue.

Therefore, we have

∂Mr(Qrq̄,q̄′,r)

∂q̄′
= lim

q̄′′→q̄′

Mr(Qrq̄,q̄′′,r)−Mr(Qrq̄,q̄′,r)

q̄′′ − q̄′
≥ −2.

We now prove bound (2). The revenue of the second price auction for two i.i.d. agents is twice

the area under the revenue curve (Lemma 2). For quadrilateral distribution Qrq̄,q̄′,r this revenue is

calculated as:

M1(Qrq̄,q̄′,r) = 2

∫ 1

0
Rq̄′(q) dq

= 2

∫ q̄

0
Rq̄′(q) dq + 2

∫ q̄′

q̄
Rq̄′(q) dq + 2

∫ 1

q̄′
Rq̄′(q) dq

= q̄ + (q̄′− q̄)(1 +
q̄′

r · q̄
) + (1− q̄′)

q̄′

r · q̄

= q̄′+ (1− q̄)
q̄′

r · q̄
.

Therefore, we have

∂M1(Qrq̄,q̄′,r)

∂q̄′
= 1 +

1− q̄

r · q̄
≥ 1.
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A Missing Proofs from Section 3

Proof of Theorem 2. As discussed in Section 3.1, we first identify the triangle distribution q̄∗ and

the r∗ for which M1 and Mr∗ obtain the same ratio. Denote the approximation ratio for the second-

price auction M1 as APX1(q̄) = 2− q̄ (the ratio of Lemma 3 to Lemma 4), which is continuous in

q̄. Denote the approximation ratio of the optimal markup mechanism against distribution Triq̄ by

APX∗(q̄) = supr>1
OPTTriq̄ (Triq̄)

Mr(Triq̄)
. By Lemma 5, the approximation ratio APX∗(q̄) is continuous in q̄

as well. It is easy to verify that APX1(0) = 2 > APX∗(0) = 1 while APX1(1) = 1 < APX∗(1) = ∞.

By continuity, there exists a q̄∗ where these two functions cross, i.e., APX∗(q̄
∗) = APX1(q̄

∗). See

Figure 3. By numerical calculation, q̄∗ ≈ 0.0931057, and

r∗ = argmax
r>1

OPTTriq̄∗ (Triq̄∗)

Mr(Triq̄∗)
≈ 2.4469452.

The details of all numerical calculations are provided in the remainder of this section.

Now, fixing r∗, we search for α∗ for which the adversary maximizes the approximation ratio of

mechanism Mα∗,r∗ by selecting triangle distribution Triq̄∗ . Denote by q̄r(α) the monopoly quantile

as a function of α for the triangle distribution that maximizes the approximation ratio of mechanism

Mα,r, i.e.,

q̄r(α) = argmax
q̄

OPTTriq̄(Triq̄)

Mα,r(Triq̄)
.

By numerical calculation, for any r ∈ [2.445, 2.449], q̄r(0.81) < q̄∗ < q̄r(0.8). Continuity of q̄r(·)
for r ∈ [2.445, 2.449] and α ∈ [0.8, 0.81] (formally proved in Appendix A.3), then implies that there

exists α∗ such that q̄r∗(α
∗) = q̄∗. By numerical calculation, α∗ ≈ 0.80564048.

To identify the optimal mechanism for triangle distributions, we evaluate the ratio of revenues

of markup mechanisms on triangle distributions to the optimal revenue. For distribution Triq̄

the optimal revenue is 2 − q̄ (Lemma 3). The revenue for r-markup mechanism is calculated by

Lemma 5. In this appendix, we drive the formula of Lemma 5 and show that it has bounded partial

derivatives in both markup r and monopoly quantile q̄. We then describe the details of the hybrid

numerical and analytical argument of Theorem 2. Finally we give the proof of continuity of the

adversary’s best response distribution to the probability the mechanism places on the second-price

auction.

A.1 Derivation and smoothness of Lemma 5

Proof of Lemma 5. Denote the quantile corresponding to the price r VTriq̄(q) for markup r > 1 as

Q̂(q, r) = QTriq̄(r VTriq̄(q)) =


q

r−qr+q if r VTriq̄(q) ≤ 1/q̄,

0 otherwise.
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When the quantile of the second highest agent is smaller than Q̂(q̄, 1/r), the price r · v(2) is higher
than the support of the valuation distribution. Therefore, the revenue of posting price r · v(2) to

the highest bidder is

Mr(Triq̄) = 2r

∫ 1

Q̂(q̄,1/r)
VTriq̄(q)Q̂(q, r) dq

= 2r

∫ 1

Q̂(q̄,1/r)

1− q

1− q̄
· 1

r − qr + q
dq =

2r

1− q̄

[
q

r − 1
+

ln(r − qr + q)

(r − 1)2

]1
q̄

1/r−q̄/r+q̄

=
2r

(1− q̄)(r − 1)

 1− q̄

1− q̄ + q̄r
−

ln
(

r
1−q̄+q̄r

)
r − 1

 ,

where the second equality holds just by the definition of the distribution.

Consider the revenue of r-markup mechanism on the triangle distribution Triq̄ as a function

of r ∈ (1,∞) and q̄ ∈ [0, 1]. The formula for this revenue is given by Lemma 5. The following

two claims show that the ratio of revenues has bounded partial derivative with respect to both

r ∈ (1,∞) and q̄ ∈ [0, 1] and, thus, numerical evaluation of the revenue at selected parameters

allows large regions of parameter space to be ruled out.

Claim 1. For any distribution F and any constants 1 ≤ r1 ≤ r2, we have Mr1(F ) ≥ r1/r2 Mr2(F ).

Claim 2. For any mechanism Mr with r ≥ 1, and any constants 0 ≤ q̄1 ≤ q̄2 < 1, we have

(1− q̄2)/(1− q̄1)Mr(Triq̄2) ≤ Mr(Triq̄1) ≤ 2(q̄2 − q̄1) +Mr(Triq̄2).

Proof of Claim 1. For any realized valuation profile, if the item is sold in mechanism Mr2 , then the

item is sold in mechanism Mr1 since the price posted to the highest agent is smaller in mechanism

Mr1 . Moreover, when the item is sold in mechanism Mr1 , the payment from agent with highest

value is at least r1/r2 fraction of the payment in mechanism Mr2 . Taking expectation over the

valuation profiles, we have Mr1(F ) ≥ r1/r2 ·Mr2(F ).

Proof of Claim 2. Consider Q̂(·, ·) as defined in the proof of Lemma 5, above. By directly comparing

the revenue from two distributions,

Mr(Triq̄1) = 2r

∫ 1

Q̂(q̄1,1/r)
VTriq̄1

(q) Q̂(q, r) dq

≤ 2(−Q̂(q̄1, 1/r) + Q̂(q̄2, 1/r)) + 2r

∫ 1

Q̂(q̄2,1/r)
VTriq̄1

(q) Q̂(q, r) dq

≤ 2(q̄2 − q̄1) + 2r

∫ 1

Q̂(q̄2,1/r)
VTriq̄2

(q) Q̂(q, r) dq

= 2(q̄2 − q̄1) +Mr(Triq̄2).

The first equality holds because the quantile of VTriq̄1
(q) · r is 0 for q < Q̂(q̄1, 1/r). The first

inequality holds because r · VTriq̄1
(q)Q̂(q, r) ≤ 1 for any quantile q. The second inequality holds
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because VTriq̄1
(q) ≤ VTriq̄2

(q) for q̄1 ≤ q̄2 and q ≥ q̄2 by the definition of distributions Triq̄1 and

Triq̄2 , and Q̂(q̄2, 1/r)− Q̂(q̄1, 1/r) ≤ q̄2 − q̄1. Moreover, we have

Mr(Triq̄1) = 2r

∫ 1

Q̂(q̄1,1/r)
VTriq̄1

(q)Q̂(q, r) dq

≥ 2r

∫ 1

Q̂(q̄2,1/r)
VTriq̄1

(q)Q̂(q, r) dq

≥ 2r(1− q̄2)

1− q̄1

∫ 1

Q̂(q̄2,1/r)
VTriq̄2

(q)Q̂(q, r) dq

=
1− q̄2
1− q̄1

·Mr(Triq̄2),

where the first inequality holds because q̄1 ≤ q̄2 and function Q̂(q, r) is increasing in q. The second

inequality holds because VTriq̄1
(q) ≥ (1− q̄2)/(1− q̄1) · VTriq̄2

(q).

A.2 Numerical and Analytical Arguments of Theorem 2

The proof of Theorem 2 is based on a hybrid numerical and analytical argument. We can nu-

merically calculate the revenue of a mechanism Mr on a distribution Triq̄ via Lemma 5 and then

we can argue, via Claim 2 and Claim 1, that nearby mechanisms and distributions have similar

revenue. This approach will both allow us to argue about the structure of the solution and to

identify the mechanism Mα∗,r∗ and distribution of the solution Triq̄∗ . Our subsequent discussion

gives the details of these hybrid arguments.

We first approximate q̄∗ by showing that q̄∗ ∈ [0.09310569, 0.09310571]. The parameters for this

range are found by discretizing the space and finding the optimal choice of q̄∗. Note that the optimal

choice of q̄∗ satisfies M1(Triq̄∗) = Mr(q̄∗)(Triq̄∗). Therefore, it is sufficient for us to show that for any

quantile q̄ ̸∈ [0.09310569, 0.09310571], either M1(Triq̄) > Mr(q̄)(Triq̄) or M1(Triq̄) < Mr(q̄)(Triq̄).

First we show for any q̄ ∈ [0, 0.09310569], M1(Triq̄) < Mr(q̄)(Triq̄). Here we discretize the space

[0, 0.09310569] into Qd with precision ϵ = 10−9. By numerically calculation using Lemma 5, we

have

min
q̄∈Qd

M2.446946(Triq̄) = M2.446946(Tri0.09310569) ≥ 1 + 10−8

and for any q̄ ∈ [0, 0.09310569], letting q̄d be the largest quantile in Qd smaller than or equal to q̄,

the minimum revenue for mechanism M2.446946 is

M2.446946(Triq̄) ≥
1− q̄d − ϵ

1− q̄d
·M2.446946(Triq̄d) ≥ 1 + 8× 10−9 > M1(Triq̄),

where the first inequality holds by Claim 2 and the second inequality holds because q̄d ≤ 0.1.

Then we show for any q̄ ∈ [0.09310571, 1], M1(Triq̄) > Mr(q̄)(Triq̄). We discretize the space
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[0.09310571, 1] into Q̂d with precision ϵ̂ = 10−9. First note that Mr(Triq̄) < 1 for any q̄ ≥ 0.093

and r ≥ 11, since the expected probability the highest type got allocated is less than 1
2 , and hence

the expected virtual value for mechanism Mr with distribution Triq̄ is less than 1. By Lemma 3,

the revenue in this case is less than 1. With bounded range for optimal ratio r, we discretize the

space (1, 11] into Rd with precision ϵr = 10−9. By numerically calculation using Lemma 5, we have

max
q̄∈Q̂d,r∈Rd

Mr(Triq̄) = M2.446945061(Tri0.09310571) ≤ 1− 3× 10−8

and for any q̄ ∈ [0.09310571, 1] and any r ∈ (1, 11], letting q̄d be the largest quantile in Q̂d smaller

than or equal to q̄ and rd be the smallest number in Rd larger than or equal to r, the maximum

revenue for distribution Triq̄ is

max
r∈(1,11]

Mr(Triq̄) ≤
rd

rd − ϵr
· (2ϵ̂+Mrd(Triq̄d)) ≤ 1− 10−8 < M1(Triq̄),

where the first inequality holds by Claim 1 and 2, and the second inequality holds because rd > 1.

Combining the numerical calculation, we have that q̄∗ ≈ 0.0931057.

Note that both mechanism M1 and Mr∗ are the best responses for distribution Triq̄∗ , achieving

revenue 1, and hence the optimal approximation ratio is

β =
OPTTriq̄∗ (Triq̄∗)

Mα∗,r∗(Triq̄∗)
= 2− q̄∗ ≈ 1.9068943.

Next we show that by choosing ratio r∗ ≈ 2.4469452 and probability α∗ ≈ 0.80564048, the

approximation ratio of mechanism Mα∗,r∗ approximates β. Here we discretize the quantile space

[0, 1] into Q′
d with precision ϵ′ = 10−9, using the formula in Lemma 3 and Lemma 5, the triangle

distribution that maximizes the approximation ratio for mechanism Mα∗,r∗ is Tri0.093105694 with

approximation ratio at most 1.9068943044. For any q̄ ∈ [0, 12 ], letting q̄d be the largest quantile in

Q′
d smaller than or equal to q̄, the minimum revenue for mechanism Mα∗,r∗ is

Mα∗,r∗(Triq̄) ≥
1− q̄d − ϵ′

1− q̄d
·Mα∗,r∗(Triq̄d)

≥ 1

1.906894309
OPTq̄d(Triq̄d) ≥

1

1.906894309
OPTq̄(Triq̄),

where the second inequality holds because q̄d ≤ 1
2 and the last inequality holds because q̄d ≤ q̄. For

any q̄ ∈ [12 , 1], the minimum revenue for mechanism Mα∗,r∗ is

Mα∗,r∗(Triq̄) ≥ α∗ ·M1(Triq̄) ≥ 0.8 ≥ 1

1.875
OPTq̄(Triq̄),

since for any q̄ ∈ [12 , 1], M1(Triq̄d) = 1 and OPTq̄(Triq̄) = 2 − q̄ ≤ 1.5. Therefore, r∗ ≈ 2.4469452

and probability α∗ ≈ 0.80564048 are the desirable parameters, with error at most 2 × 10−8 in
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approximation ratio. By our characterization, the error solely comes from numerical calculation,

finishing the numerical analysis for Theorem 2.

A.3 Continuity of Distribution in Probability of Second-price Auc-

tion

Recall the function q̄r(α) which gives the adversary’s best-response triangle distribution the mech-

anism Mα,r. The continuity of the function q̄r(α) is used to prove the existence of equilibrium

between the randomized markup mechanism and the triangle distribution in Theorem 2. The

following claim proves the continuity of the function q̄r(α), by numerically bounding the second

derivative of the revenue ratio of the stochastic markup mechanism Mα,r on distribution Triq̄ with

respect to α, the probability that the markup mechanism runs the second-price auction.

Claim 3. Given any r ∈ [2.445, 2.449], function q̄r(α) is continuous in α for α ∈ [0.8, 0.81].

Proof of Claim 3. By Lemma 5 and Lemma 1, the approximation ratio of mechanism Mα,r for

triangle distribution Triq̄ is

APX(α, r, q̄) =
OPTTriq̄(Triq̄)

α ·M1(Triq̄) + (1− α)Mr(Triq̄)

=
2− q̄

α+ 2r(1−α)
(1−q̄)(r−1)

(
1−q̄

1−q̄+q̄r +
ln
(

r
1−q̄+q̄r

)
1−r

)

The approximation ratio is a continuous function of α, q̄. Therefore, to show that fixing r, function

q̄r(α) is continuous in α, it is sufficient to show that there is a unique q̄ that maximizes APX(α, r, q̄)

for r ∈ [2.445, 2.449] and α ∈ [0.8, 0.81], or equivalently, we show that there is a unique q̄ that

minimizes 1/APX(α, r, q̄). By Claim 1 and 2, we can discretize the quantile space and numerically

verify that distributions with monopoly quantiles q̄ ̸∈ [0.093, 0.094] are suboptimal. Therefore, we

prove the uniqueness of the maximizer by showing that the second order derivative of 1/APX(α, r, q̄)

is strictly positive for q̄ ∈ [0.093, 0.094].

∂2 1
APX(α,r,q̄)

(∂q̄)2
=

4(1− α)r

(
− r−1

(1−q̄+q̄r)2
+ 1

(1−q̄)(1−q̄+q̄r) −
log( r

1−q̄+q̄r
)

(r−1)(1−q̄)2

)
(r − 1)(2− q̄)2

+

2(1− α)r

(
− (r−1)2

(1−q̄+q̄r)3
− r−1

(1−q̄)(1−q̄+q̄r)2
+ 2

(1−q̄)2(1−q̄+q̄r)
+

2 log( r
1−q̄+q̄r

)

(r−1)(1−q̄)3

)
(r − 1)(2− q̄)

+

4(1− α)r

(
− 1

1−q̄+q̄r −
log( r

1−q̄+q̄r
)

(r−1)(1−q̄)

)
+ 2α(r − 1)

(r − 1)(2− q̄)3
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Figure 7: Comparison of three measures of robustness. The horizontal axis indexes the prior
distributions F with respect to which we aim to be robust and is ordered by the performance
of the optimal mechanism OPTF (F ). The vertical axis is the absolute performance. M(F ) is
the expected performance of mechanism M given distribution F , and OPTF is the Bayesian
optimal mechanism with the knowledge about distribution F . Any mechanism M with
performance curve within the shaded gray area is robustly optimal.

By substituting the upper and lower bounds of α, r, q̄, we know that

∂2 1
APX(α,r,q̄)

(∂q̄)2
> 0.7

for r ∈ [2.445, 2.449], α ∈ [0.8, 0.81] and q̄ ∈ [0.093, 0.094], which concludes the uniqueness of the

maximizer and the continuity of function q̄r(α).

B Discussion of Robustness Paradigms

This paper focused on the robustness paradigm of worst case multiplicative-approximation ratio.

This section provides an informal illustration of and comparison between it and other prevalant

robustness paradigms. Specifically, we illustrate the ideas in a robust monopoly pricing problem

where a monopoly seller aims to sell a single item to a buyer. The seller is uncertain about the

distribution over values of the buyer except the fact that the distribution has support within [1, H].

This problem is considered in Bergemann and Schlag (2008) for min-max regret and in Hartline and

Roughgarden (2014) for multiplicative approximation. Through this example, we will show that

while the absolute max-min optimal focuses attention at small scales and min-max regret focuses

at large scales, the multiplicative-approximation ratio focuses puts equal focus on all scales. These

frameworks are illustrated in Figure 7 and the example is summarized in Table 1.

The absolute max-min framework is maxM minF M(F ). For the max-min objective, the princi-

pal designs mechanisms that target the absolute worst case performance. Therefore, any mechanism

that provides a performance guarantee between the optimal and the max-min value for all instances

is admissible for the principal, i.e., any mechanism with performance curve within the gray area is

max-min optimal for the principal. In particular, it is possible that the max-min optimal mechanism

only provides the max-min value for all problem instances. However, on good instances, i.e., where

OPTF (F ) is large, the gap between the optimal performance and the performance of the max-min
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min revenue
(large is better)

max approximation
(small is better)

max regret
(small is better)

max-min optimal mechanism 1 H H − 1
ratio optimal mechanism 1

1+lnH
1 + lnH H − H

1+lnH

regret optimal mechanism 0 ∞ H
e

Table 1: Comparisons of robust paradigms.

robust mechanism can be very large. For the max-min objective in the robust monopoly pricing

problem, characterizing the optimal mechanism is trivial, i.e., the max-min optimal mechanism is

to sell the item with price 1, which obtains max-min revenue of 1 regardless of the value of the

buyer. Now we evaluate this mechanism using other robust paradigms. It is easy to verify that if

the actual distribution is a point mass at value H, the optimal revenue is H and the multiplicative

approximation ratio is H and the regret is H−1. Thus, the max-min optimal mechanism can have

very poor performance under other robust paradigms.

The min-max regret framework is minM maxF OPTF (F )−M(F ). The min-max regret is often

achieved at instances where there is the most to lose. The principal essentially targets the best

case performance, and any mechanism that provides a performance guarantee that suffers at most

an additive γ loss for all instances is regret optimal, where γ is the min-max regret. In this

case, if OPTF (F ) is small, perhaps even smaller than γ, it is possible that the min-max regret

optimal mechanism does not provide any non-trivial performance guarantee. Let us again consider

the robust monopoly pricing problem for minimizing worst case regret and suppose that H ≥ e.

Bergemann and Schlag (2008) show that the min-max regret optimal mechanism is to post a

randomized price p with cumulative distribution

G(p) =

0 p ∈ [1, He ),

1 + ln p
H p ∈ [He , H],

which guarantees min-max regret of H
e . Note that if the distribution over values has support less

than H
e , the item is not sold with probability 1 and for any such distribution, the expected revenue

given by this robust mechanism is 0. Thus, min-max regret provides a trivial guarantee when the

optimal revenue is small. In particular, for the min-max regret optimal mechanism, the minimum

revenue is 0 and the maximum multiplicative approximation ratio is infinity.

In contrast, the multiplicative approximation framework considered in this paper ensures that

the robust mechanisms provide comparable performance to the Bayesian optimal for any instance.

In particular, in the monopoly pricing example, Hartline and Roughgarden (2014) show that to

minimize the multiplicative approximation ratio, the seller can post a price p with distribution

G(p) = 1+ln p
1+lnH for any p ∈ [1, H]. The multiplicative approximation ratio is at most 1+ lnH for all

possible distributions. Moreover, the minimum revenue for the ratio optimal mechanism is 1
1+lnH

and the maximum regret is H − H
1+lnH . As illustrated in Table 1, the multiplicative approximation
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framework provides a balanced performance between the extreme robust paradigms of absolute

max-min and min-max regret.
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