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Abstract

A principal seeks to learn about a binary state and can do so by enlisting

an agent to acquire information over time using a Poisson information arrival

technology. The agent learns about this state privately, and his effort choices

are unobserved by the principal. The principal can reward the agent with a

prize of fixed value as a function of the agent’s sequence of reports and the

realized state. We identify conditions that each individually ensure that the

principal cannot do better than by eliciting a single report from the agent after

all information has been acquired. We also show that such a static contract is

suboptimal under sufficiently strong violations of these conditions. We contrast

our solution to the case where the agent acquires information “all at once;”

notably, the optimal contract in the dynamic environment may provide strictly

positive base rewards to the agent even if his prediction about the state is

incorrect.
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1 Introduction

This paper concerns the design of contracts to incentivize experts to acquire information for

predicting a future state when doing so is costly and when this information acquisition is

private. This problem may arise in a variety of situations, often when the contract designer

expects to make a high-stakes decision—for instance, whether to launch a military attack in

response to a perceived threat, whether to make a sizable investment, or whether to approve

a risky vaccine to fight a budding pandemic. In these cases, whether a given action is best

(e.g., invasion, investment, approval, respectively, for the above examples) may depend on

the underlying state, which we will take as binary in this paper for simplicity. Notice that

this problem features the combination of moral hazard (since the principal cannot monitor

the expert’s effort) and endogenous adverse selection (since the expert’s actions generate

private information).

In our model, while the agent has no direct interest in the state or the principal’s

action, he can be rewarded with a prize on which (i) he places bounded value, but (ii) the

principal places no intrinsic value. For example, this reward could be a recommendation or

a grade, often much more valuable for early-career workers than any feasible direct payment.

Alternatively, this could also reflect budget constraints on the principal, where the residual

value of payments is second-order relative to the value of information. For instance, this

situation applies to non-profit organizations that subject to budget constraints based on

external funding in the form of grants.

Crucially, the rewards given to the expert can depend on the state of interest, where

this state is unaffected by the principal’s actions. For instance, suppose the principal tasks

the agent with determining whether or not the economy will be in a recession on some

given date, as this may determine the relative profitability of an investment. In that case,

while the principal’s investment decision would have a negligible influence on the state of

the economy, rewards could still vary depending on market outcomes. Allowing the reward

to depend on the state incentivizes the agent to exert effort to learn about it.1

And lastly, we consider an information acquisition environment for the expert where

learning takes time. Thus, the principal must provide incentives for effort to be exerted

repeatedly, with possible interactions between the incentives provided at earlier times and

later times. The dynamic nature of the agent’s information acquisition problem is a sig-

nificant point of departure from past work on incentivizing information acquisition (e.g.,

1As we point out in Section 2.4, our analysis also applies to the case where the principal can
condition rewards on a binary signal correlated with the underlying state, rather than the state
itself—for instance, if the agent is paid as a function of the outcome of a clinical trial, whose success
or failure is itself subject to noise.

2



Zermeno, 2011; Li et al., 2022), which typically assumes “all-at-once” information acquisi-

tion. But most practical information acquisition problems involve at least some dynamic

elements, often taking the form of a time investment—for instance, if the expert’s task is

to find a piece of evidence, and their problem is to decide if and when to give up. In such

dynamic environments, additional challenges arise even for describing the agent’s incentives

for acquiring costly information when rewards condition on time and choices in rich ways;

hence, several existing characterizations and intuitions from the static model do not extend.

A natural open question is how the principal can optimally leverage the dynamics.

Despite the challenges, we obtain insights on optimal dynamic contracts for information

acquisition for a particular class of technologies in the agent’s problem. In each period, the

agent decides whether to exert effort, potentially observing a signal informative of the state

but incurring a flow cost. If the agent exerts effort, he may receive either a “good signal”

(evidence of one state) or a “bad signal” (evidence of the other state). The arrival of signals

depends on the true state and occurs at a fixed rate. Importantly, once one signal arrives, no

further signals can be observed. This assumption corresponds to situations in which a single

piece of evidence informs the agent about the unknown state, and the agent is searching

for that specific evidence. If the agent simply rediscovers the same evidence, he will not

update his belief. However, we do not assume that the evidence necessarily reveals which

action would have been better with certainty (unlike, for instance, Keller et al., 2005, which

studies the analogous information acquisition technology in the continuous-time setting).

As alluded to above, only the agent observes this signal. This feature reflects our goal of

studying settings where the agent can easily manipulate or counterfeit evidence, or when

the principal must rely on expertise to interpret it.

For this class of information arrival processes, the principal learns the most if the agent

works for as long as possible in the absence of evidence arrival and truthfully reports any

finding once it arrives. In the following section, we will elaborate on how the principal can

utilize the dynamics to incentivize the agent to work longer and describe three canonical

environments where a static implementation of optimal contracts exists. Interestingly, even

though the optimal contracts are static, the dynamics in effort choices still affect the design

of optimal contracts.

1.1 Results and Intuition

To incentivize the agent, the principal could select an arbitrary dynamic contract, specifying

rewards as a function of the realized state and the sequence of reports from the agent. Such

contracts could be quite complex if rewards differ substantially depending on the sequence

of reports from the agent. A simpler alternative is to wait until some terminal date and
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subsequently elicit reports via a scoring rule—that is, a mapping from a single report of the

agent’s final belief to a reward whose amount depends on the state. We aim to characterize

when scoring rules are optimal in the aforementioned dynamic settings.

Indeed, contracts requiring dynamic reports from the agent may be preferred if the

principal’s goal is to learn about the evolution of beliefs over time; however, our interest

is in settings where the principal is only concerned with terminal beliefs after information

acquisition. Even still, one might conjecture that dynamic contracts may be necessary for

optimality by allowing the principal to screen the agent using the evolution of their beliefs,

thus more effectively incentivizing effort. Perhaps surprisingly, this force play little role in

determining whether a single scoring rule at the terminal date is optimal.

Nevertheless, dynamic contracts may, in fact, enable the principal to strengthen incen-

tives provided to the agent. To see why, we observe that the principal can generally provide

stronger incentives to acquire information by lowering rewards in any state over which the

agent assigns increasing certainty. Specifically, as the agent’s belief drifts toward one state,

he becomes increasingly sure of his optimal report. Once the expected payoff from stopping

exceeds the value of continued effort, he stops working once and for all. Lowering the reward

in the state the agent’s belief drifts toward decreases the expected payoff from stopping,

thus providing a stronger dynamic incentive to exert effort. Indeed, we show that contracts

with such decreasing reward structures are optimal in general (Theorem 5) and provide

sufficient conditions such that this type of dynamic contract strictly outperforms all scoring

rules (Theorem 4).

We show that the optimal dynamic contract has an implementation as a scoring rule in

three economically meaningful classes of information arrival:

1. stationary environment (Theorem 1) where the belief does not drift in the absence of

a Poisson signal;

2. perfect-learning environment (Theorem 2) where the Poisson signals are fully reveal-

ing;

3. single-signal environment (Theorem 3) where the belief can only jump in one direction

upon receiving a Poisson signal.

In the first case, since the agent’s belief does not change over time, the optimization problem

is essentially the same at every point in time. Thus, there is no need to adjust the rewards.

In the latter two cases, while the previous discussion suggests the principal may wish to

“reoptimize” rewards over time, doing so would lower the agent’s continuation payoff from

exerting effort at earlier times, weakening their incentives. Essentially, reoptimization of
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rewards would redistribute the incentives of the agent from exerting effort across different

periods; we show that the optimal trade-off requires no reoptimization in perfect-learning

and single-signal environments. By contrast, our conditions for the strict suboptimality of

scoring rules in Theorem 4 essentially boils down to a requirement that beliefs drift over

time, with a sufficiently strong violation of the second and third conditions.

These results do not imply that the presence of dynamics fails to influence the form of

the optimal contract. First, it need not be the case that the optimal scoring rule provides the

strongest incentives at the prior, as the principal must balance incentives as the agent’s belief

changes. Second, in static settings, the principal’s optimal contract only requires the agent

to guess a state, providing a positive reward if the guess is correct and no reward otherwise

(Li et al., 2022); such scoring rule formats may be suboptimal in our dynamic setting even

when the optimal contract has an implementation as a scoring rule. Allowing the agent to

make a report that ensures strictly positive rewards in either state encourages the agent

to exert effort at earlier times by increasing his continuation payoff. This modification

is optimal if the rewards in both states are sufficiently low so that this option does not

discourage the agent from exerting effort at later times.

Our paper focuses on settings where the principal faces a budget constraint while the

agent gathers information via a (discretized) Poisson process, aligning with the applications

we had in mind. Section 7 discusses the challenges and techniques for extending our results

to environments where the principal can design contracts utilizing public randomization

devices, where the information acquisition process may change over time, or where the

principal values the reward or is only constrained by an ex-ante budget.

1.2 Related Literature

We build most directly on the literature on scoring rules. Most of this literature considers

schemes for eliciting information (e.g., McCarthy, 1956; Savage, 1971; Lambert, 2022).2 By

contrast, our focus is on how to incentivize its acquisition. Several papers have studied this

design problem, including Zermeno (2011); Carroll (2019); Li et al. (2022); Neyman et al.

(2021); Hartline et al. (2023); Chen and Yu (2021). Relative to this literature, the crucial

distinction is our focus on dynamics. In particular, even though Neyman et al. (2021);

Hartline et al. (2023) and Chen and Yu (2021) have considered models where agents have

a dynamic information acquisition process, all those papers make an explicit assumption

that the principal can only use a static scoring rule and that the agent is only required to

make a single report after the learning process ends. In contrast, the principal in our model

2The fact that scoring rules can condition on the state makes this literature reminiscent of work
on mechanism design with ex-post verifiability (e.g., Deb and Mishra, 2014; DeMarzo et al., 2005).
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can design dynamic contracts for monitoring the learning process and scoring the agent.

In dynamic environments, Chambers and Lambert (2021) show how to design (strictly)

incentive compatible dynamic scoring rules, although these do not generally maximize the

incentive for information acquisition.

The problem we build on is a dynamic mechanism design problem featuring both adverse

selection and moral hazard. Much of this literature focuses on environments where the

principal’s goal is to specify an allocation rule as a function of an agent’s type. Pavan

et al. (2014) showed how dynamic mechanism design problems without moral hazard can

(under regularity conditions) be solved using a suitably defined notion of virtual value,

generalizing results tracing from Courty and Li (2000) that derived a similar formula in

a two-period model. Eso and Szentes (2017); Garrett and Pavan (2012) study a similar

dynamic contracting problem with a single agent, but allowing both adverse selection and

moral hazard; Bergemann and Strack (2015) instead develop an analog under continuous

time. Our results on the optimality of static scoring are reminiscent of other work discussing

the optimality of static screening in elaborations of the sequential screening model by Courty

and Li (2000) (see, for instance, Krähmer and Strausz, 2015; Bergemann et al., 2020).

Despite the similarity in the broader agenda of introducing realistic dynamics to otherwise

canonical static settings, our problem is not nested within these frameworks. Our work

examines how state-contingent rewards influence the incentives for information acquisition,

an issue absent from much of this line of work.

An exception is in the literature on contracting for experimentation, which typically

considers contracting problems where the possibility of success is uncertain, and where

payments can depend on whether success occurs. To our knowledge, Bergemann and Hege

(1998, 2005) are among the first to study this problem, doing so under the assumption

that a “success” reveals the state. This Poisson structure, which we generalize, is standard

in the subsequent literature. Halac et al. (2016) consider a version of this problem with

ex-ante adverse selection; while this paper allows arbitrary transfers, Guo (2016) considers

a delegation setting without transfers. McClellan (2022) considers a related model, but

where information instead takes the form of a Brownian motion and an agent who decides

when to stop.

In our setting, the principal cannot extract payments from the agent and can only reward

the agent with a prize for which they have no direct value. From this perspective, our con-

tracting problem closely resembles Deb et al. (2018), considering the problem of screening

forecasters when the principal can only provide incentives using a state-contingent bounded

reward (see also Deb et al., 2023; Dasgupta, 2023). This assumption is also present in

Hebert and Zhong (2022), considering a principal-agent problem to keep an agent engaged;
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while similar to ours, the design problem is rather different as their principal designs an

information structure instead of a payment scheme. Wong (2023) studies a dynamic mecha-

nism design problem with endogenous information and limited transfers, but the principal’s

design problem consists of choosing a monitoring technology.

Lastly, a notable recent literature has studied single-agent problems featuring informa-

tion acquisition, where the agent’s interest in the state is exogenous. Important papers on

this topic include Morris and Strack (2019); Bloedel and Zhong (2021); Zhong (2022); Liang

et al. (2022); Che and Mierendorff (2019). We note that such problems often have station-

arity naturally embedded in them; given an arbitrary dynamic contract, there is no reason

such stationarity should emerge. Partially for this reason, our approach does not require

determining the agent’s exact best-response following an arbitrary dynamic contract.

2 Model

A principal contracts with an agent to acquire information about an uncertain state to be

publicly revealed after time T . Initially, the principal and the agent share a common prior

D ∈ ∆(Θ). Our baseline model considers the case where Θ = {0, 1}. We assume that

the set of dates at which the agent can acquire additional information is {0,∆, 2∆, . . . , T},
although our results also apply to the high-frequency limit as ∆ → 0.

At time T , the principal will decide on an action a ∈ A based on the information

acquired by the agent. After the state θ is revealed, the agent receives a reward r ∈ [0, 1]

to be specified by the contract the principal offers. The principal’s payoff in this game is

v(a, θ), while the agent’s payoff is r. Put differently, the principal has a maximum budget

of 1 for rewarding the agent and places no value on the rewards themselves. We assume

that both the principal and the agent are risk-neutral. We provide a detailed discussion of

our modeling assumption in Section 2.4.

2.1 Information Acquisition

At each time t, the agent can choose to exert effort or not. If the agent chooses to exert

effort, the agent pays a cost of c∆ for some cost parameter c > 0. We take the information

arrival process to fall into the class of single-success Poisson learning. Specifically, at any

time t ≥ 0:

• if the agent exerts effort, a “good news” signal G arrives with probability λG
θ ∆ and a

“bad news” signal B arrives with probability λB
θ ∆ when the state is θ ∈ {0, 1}, where

λG
1 > λG

0 and λB
1 < λB

0 . The agent receives signal N if neither G nor B arrives.
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• If the agent does not exert any effort, only signal N arrives.

• Once a signal G or B arrives, no further information can be acquired.

We refer to G and B as Poisson signals to distinguish them from N . Note that although

we refer to G as “good news” and B as “bad news,” we do not mean to suggest that either

the principal or the agent has any intrinsic preference over these two signals, but rather do

so as a way of distinguishing how we refer to states and signals. We denote the signal space

for Poisson signals as S = {G,B} and the extended signal space as S̄ = S ∪ {N}. Without

loss of generality, we assume that

λG
1 + λB

1 ≥ λG
0 + λB

0 ,

so that the agent’s belief drifts towards state 0 in the absence of a Poisson signal arrival.

Note that in our model, while the fact that a Poisson signal arrives at most once implies

that the agent’s problem ends after success arrives, it does not necessarily impose that the

agent is certain of the state since signals may not be perfectly revealing.

To simplify the exposition, for any time t ≤ T and assuming that the agent has chosen

to exert effort for all periods until t, we let µN
t denote the posterior belief if no Poisson

signal arrived before time t (including t). Similarly, we let µG
t and µB

t denote the posterior

agent’s belief when receiving Poisson signals G and B (respectively) exactly at time t. We

also refer to µN
t as the “no-information belief” of the agent at time t.

There are several specifications of the model that are of particular interest:

1. Stationary environment: In this case, λG
1 + λB

1 = λG
0 + λB

0 , and hence the agent’s

belief absent a Poisson signal does not drift over time, i.e., µN
t = D for all t ≤ T .

2. Perfect-learning environment: In this case, λG
0 = λB

1 = 0, and hence the agent

perfectly knows the state after receiving a Poisson signal, i.e, µG
t = 1 and µB

t = 0 for

all t ≤ T .

3. Single-signal environment: In this case, either λB
0 = λB

1 = 0 or λG
0 = λG

1 = 0.

Without loss of generality, we focus on the former case, i.e., the agent’s belief drifts

towards state 0 when not receiving any Poisson signal and jumps towards state 1 after

receiving one.

Note that if λG
1 , λ

G
0 ∈ (0, 1), the good news signal does not reveal the state; the same

observation holds for the bad news signal.
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2.2 Contracting

The principal does not observe the effort choice or the signal received by the agent at any

time t < T . Instead, the principal can design contracts to reward the agent to incentivize

costly information acquisition. Moreover, the designed contract must satisfy the budget

constraints on rewards.

At any time t, let Mt be the message space of the agent. The history at time t is denoted

as ht = {mt′}t′≤t. Let Ht be the set of all possible histories at time t. Before time 0, the

principal commits to a reward scheme

R : HT ×Θ → [0, 1]

where R(hT , θ) is the fractional reward of the agent when his history of reports is hT , and

the realized state is θ. An alternative interpretation is that the principal has an indivisible

reward, with R(hT , θ) denoting the probability that the agent receives the reward.3 The

following formalizes the timeline of our model:

1. The principal commits to a contract R; the state θ ∈ Θ is drawn according to the

prior, D ∈ ∆(Θ).

2. At any time t < T ,

• the agent chooses whether to exert effort, and pays cost c∆ if he exerts effort;

• a Poisson signal s ∈ {G,B} arrives with probability λs
θ∆ if the agent exerts

effort and no Poisson signal has arrived before t; signal N arrives otherwise;

• after observing this outcome, the agent sends a message mt to the principal.

3. The principal decides on an action a ∈ A. The state θ is then publicly revealed, and

the agent receives reward R(hT , θ).

The principal’s objective is to maximize her expected payoff E[v(a, θ)] subject to the

budget constraint.

3Note that although we allow randomization over the event that the agent receives the full budget,
the contracts we defined above are essentially deterministic since the probability that the agent gets
the full budget is a deterministic function of the history of reports. In this paper, we focus on
deterministic contracts, deferring our discussion of the possibility of randomization influences the
results in Section 7.1.
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2.3 Scoring Rules and Static Contracts

The main result of our paper is to provide sufficient conditions under which an optimal

contract only requires a single, final report from the agent for the aggregated information.

Using the terminology from information elicitation, a scoring rule P : ∆(Θ) × Θ → R for

eliciting the agent’s subjective belief is a mapping from the posterior space and the state

space to a real number; we refer to the corresponding real number output by this function

as the score. A scoring rule is essentially a static contract described in our model.

Definition 1 (Implementation as Scoring Rules).

A dynamic contract R can be implemented as a scoring rule P if the message space MT =

∆(Θ), and for any history of reports hT with last message mT , we have R(hT , θ) = P (mT , θ)

for all states θ ∈ Θ.

2.4 Discussion

In this section, we briefly describe some of the major assumptions of our model and what

they reflect. The first assumption is that the principal has no direct preference over the

transfer provided to the agent. One case where this is reasonable is if the mechanism

through which the principal can reward the agent is itself non-monetary. For instance, it

could be that the principal can either provide some benefit to the agent (e.g., deciding to

hire them, as in Deb et al. (2018), or a promotion) or access to some special recognition

(e.g., a good grade on an exam). Another is if the principal is herself budget-constrained

and where the value of any residual transfer is negligible compared to the value of additional

information acquisition. Similarly, it may be that while the principal designs the contract,

the award itself is rigidly set by a third party (e.g., by a granting authority), implying that

the principal is not the residual claimant of any reward kept from the agent.

Second, we assume that the agent privately observes the signal itself. This assump-

tion reflects the agent’s particular expertise in evaluating evidence relative to the principal.

Even in cases where signals correspond to tangible objects, however, our analysis is relevant

insofar as such signals could be easily falsified or fabricated by the agent. In data analy-

sis settings, for instance, fraud may take substantial time or effort to uncover, making it

impossible to condition on this outcome.

Next, we assume that the agent can observe at most one success without assuming

this success perfectly reveals the state. This assumption greatly simplifies the analysis by

allowing us to view the resulting experiment’s informativeness as synonymous with the

time the agent exerts effort in the absence of success. This assumption is automatically

satisfied when the Poisson signals are sufficiently informative, disincentivizing the agent
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from exerting effort after receiving a Poisson signal given any feasible contract. In cases

where signals correspond to evidence, the assumption reflects the existence of a single piece

of evidence. As an example, a defense analyst may be interested in assessing a threat

from some nefarious actor, with the evidence corresponding to images from the actor’s

headquarters. While only one headquarters might exist, the actor’s intent may or may not

be discernable from images of it. In a biomedical context, a researcher may be interested in

successfully performing a particular chemical reaction as part of the experiment. In this case,

while performing the reaction twice generates only negligible additional information, even

perfect knowledge of the subsequent outcome only partially reveals whether a treatment

based on it will be effective and worth investment.

Lastly, we take the state to be contractible. There are many channels through which

contractability would emerge—for instance, if the principal’s action reveals the correct de-

cision ex-post. This conditioning incentivizes the agent to acquire information by making

their reward sensitive to the true state. Our message and analysis would remain unchanged,

albeit with some expositional detours, if instead the principal were to condition rewards on

some signal s ∼ I(θ) instead of θ itself; while this modification would imply that knowing θ

would be insufficient for knowing s—and thus rule out perfect learning—our framework

covers this case as well. In the static setting without moral hazard, such a modification is

explored by Azrieli et al. (2022). Thus, as long as the principal has access to some statistic

which is correlated with the true state, our results still hold.

3 Illustrations

In this section, we introduce an auxiliary static model to illustrate the tension for designing

optimal contracts in the dynamic environments. Moreover, the static model serves as a

benchmark, showing that even under conditions where the optimal contract has an imple-

mentation as a scoring rule, the optimal scoring rule in the dynamic model still differs from

that in the static model.

3.1 An Auxiliary Static Model

To illustrate the tensions in the dynamic model, we take a slight detour by considering

an auxiliary static model with binary states Θ = {0, 1} studied by Li et al. (2022). In

Section 5, we will show how to connect this static model to our dynamic model and use

this connection to prove the optimality of scoring rules in general dynamic environments.

First, we review the characterizations of optimal scoring rules in the static model and their
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Figure 1: Expected score UP (µ) of a V-shaped scoring rule P with parameters z0, z1.

implications in this section.

Binary Effort Static Game Consider an auxiliary static setting with binary effort.

That is, the agent can choose to either not exert effort, leaving their prior belief unchanged,

or exert effort and receive a signal s ∈ Ŝ according to signal structure σ : Θ → ∆(Ŝ)

where the signal space Ŝ for the static setting is a measurable set. In the static model,

the principal’s objective is to find a scoring rule that maximizes the expected difference in

scores between exerting effort and not exerting effort, subject to a budget constraint on the

scores. That is, letting F be the distribution over posterior µ given the signal structure σ,

the principal maximizes

Eµ∼F [Eθ∼µ[P (µ, θ)]]−Eθ∼D[P (D, θ)]

subject to the constraint that P (µ, θ) ∈ [0, 1] for all µ ∈ ∆(Θ) and θ ∈ Θ. Intuitively, given

any cost of exerting effort in the static model, the agent is more likely to be incentivized

to exert effort when the score difference is larger. In the static model, call a scoring rule

optimal if it provides the maximum score increase to the agent from exerting effort.

Optimal Scoring Rules In the static model, it turns out that optimal scoring rules fall

into the class of V-shaped scoring rules. A V-shaped scoring rule has an implementation

whereby the agent guesses a state and obtains some reward amount (depending on the

state), provided his guess is correct. The agent receives 0 if his guess is wrong.

Definition 2 (V-shaped Scoring Rules).
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A scoring rule P is V-shaped with parameters z0, z1 if

P (µ, θ) =


z1 µ ≥ z0

z1+z0
and θ = 1

z0 µ < z0
z1+z0

and θ = 0

0 otherwise.

We say P is a V-shaped scoring rule with kink at D if the parameters z0, z1 satisfies z0 =

1, z1 =
1−D
D if D ≥ 1

2 and z0 =
D

1−D , z1 = 1 if D < 1
2 .

The terminology of the scoring rule as “V-shaped” comes from the property that the

expected score UP (µ) ≜ Eθ∼µ[P (µ, θ)] is a V-shaped function, which is illustrated in Fig-

ure 1. Furthermore, given any V-shaped scoring rule P with kink at D, the agent with prior

belief D is indifferent between guessing the state is either 0 or 1.

Proposition 1 (Li et al., 2022). In the binary effort static game, for any prior D, a

V-shaped scoring rule P with kink at prior D is optimal for all signal structures σ.

Proposition 1 provides an optimal solution for the static game. According to Li et al.,

2022, the V-shaped scoring rule P is essentially the uniquely optimal scoring rule when the

agent’s signals, received after exerting effort, are not fully revealing.

The underlying intuition for Proposition 1 is that in static environments, subject to the

convexity constraint and the constraint that the expected score at the prior is a constant,

V-shaped scoring rules maximize the expected score at all posteriors, thus providing the

maximum incentives for the agent to exert effort. We emphasize that Proposition 1 implies

that in the static model, the optimal scoring rule only depends on the prior D, not on the

signal structure σ.

Proposition 1 illustrates one of the tensions in designing optimal contracts in dynamic

environments. Ideally, the principal would want to design contracts that provide the optimal

incentives for the agent to exert effort at any time t ≤ T , since doing so would make them

willing to work for the longest time possible. However, since the agent’s belief µN
t may drift

over time, the scoring rules that provide the optimal incentives at time t can be inconsistent

with the scoring rules that are optimal for time t′ when t′ ̸= t. The dynamic incentives of

the agent further imply that the optimal incentives cannot be achieved simultaneously at

every time t ≤ T . In Section 5, we will show that even with such tensions in the dynamic

model, there are several canonical dynamic environments in which optimal contracts have

an implementation as a scoring rule. We emphasize that this does not imply that the

optimal scoring rules for the dynamic model necessarily coincide with the optimal scoring

rules for the static model, and we will illustrate environments in which the optimal scoring

rules for the dynamic model exhibit novel features in Sections 3.2, 5.2 and 5.3.
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3.2 Optimal Scoring Rule in Dynamic Environments

To highlight some preliminary intuition regarding how the principal optimizes the agent’s

contract, we first describe the performance of V-shaped scoring rules that ask the agent to

guess a state and provide a reward if they are correct. To obtain closed-form solutions, we

describe the agent’s payoff as ∆ → 0 against such a scoring rule and further assume that

there is a single source and that signals are fully revealing, i.e.,

λB
0 = λB

1 = λG
0 = 0.

We also assume that the time horizon T is sufficiently large such that it will not be a binding

constraint in the design of optimal scoring rules. The optimality of V-shaped scoring rules

in this environment will follow from our general analysis in Theorem 2; here, we illustrate

the tradeoffs the principal may face when setting the agent’s rewards.

Denote the two scores the principal offers in V-shaped scoring rule P as (r0, 0) and

(0, r1), the former being the selected score if no signal arrives and the latter being the score

selected if the G signal arrives. Let τ be the time such that the agent is indifferent between

exerting effort and not given scoring rule P . One can show (see Appendix A.5 for details)

that the stopping belief is:

µN
τ =

c

λG
1 r1

We note that this expression is independent of the reward r0. From this, we conclude that

the principal should always set r0 = 1, as doing so relaxes the agent’s moral hazard problem

as much as possible. As we shall see, this conclusion holds whenever learning is perfect.

This argument yields a stopping belief of c
λG
1 r1

, and a stopping payoff of 1− c
λG
1 r1

.

Solving for the agent’s value function, we obtain, for some constant k pinned down by

the agent’s payoff at the stopping belief:

V (µN
t ) = k(1− µN

t ) +
r1λ

G
1 − c+ c(1− µN

t ) log
(
1−µN

t

µN
t

)
λG
1

.

We can verify that V ′′(µN
t ) > 0 from this solution. One can also show V ′(c/(r1λ

G
1 )) = −1,

so that the value function is everywhere above (1−µN
t ). Thus, the agent would never shirk

and choose option (1, 0) prior to time τ ; so, as long as the value function is also above r1µ
N
t ,

the moral hazard constraint does not bind before τ .

If the principal did not need to worry about the moral hazard constraint binding, then

it is clear from examining the stopping belief µN
τ that the principal should set r1 = 1.
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Figure 2: Value function with perfect learning; r1 = r0 = 1, c = .2, λG
1 = 1

However, Figure 2 shows that if the agent is too optimistic that θ = 1, then the agent

prefers to never exert effort instead of exerting effort until time τ . As the agent’s belief

increases from the stopping belief, the value function is strictly larger than the optimal

payoff from stopping. Nevertheless, at some point, the value function becomes lower than

the payoff under the score (0, 1). In this case, the moral hazard constraint binds at the

initial time.

If the agent’s payoff from exerting effort until τ is just below the payoff from choosing

the score (0, 1), then the moral hazard constraint binds, and the principal should set r1 < 1.

Note that a decrease in r1 lowers both the payoff from stopping immediately, as well as the

value function; however, the impact on the payoff from immediately stopping is larger since

the prospect of obtaining r0(1 − µN
τ ) following “no news” induces the agent to work, and

this does not vary with r1. So, if the moral hazard constraint is violated at time 0, then

the principal should lower r1 so that it binds.

So, consider how the scoring rule changes as µN
0 (the initial belief that θ = 1) increases:

• For µN
0 < c/λG

1 , it is impossible to induce the agent to acquire any information.

• There exists µ∗ such that when c/λG
1 < µN

0 < µ∗, the optimal scoring rule involves

r1 = 1.

• There exists µ∗∗ < 1 such that when µ∗ < µN
0 < µ∗∗, the optimal scoring rule involves

r1 < 1, with the exact value pinned down by the condition that the agent is indifferent

between (i) working continuously until their belief is c/(λG
1 r1) and (ii) never working

at all.
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• For µN
0 > µ∗∗, it is impossible to induce the agent to acquire any information.

This observation illustrates one of the crucial differences between the optimal scoring rule

in the dynamic model and that in the static model. In particular, in the case that µ∗ <

µN
0 < µ∗∗, a V-shaped scoring rule with a kink at the prior can be strictly suboptimal.

Instead, the kink of the V-shaped scoring rule should be located at the belief µ between the

prior belief µN
0 and the stopping belief c/(λG

1 r1) in order for the moral hazard constraints

to bind at those beliefs.

This observation also clarifies why the principal may want to (but cannot) reoptimize

the scoring rule. While giving the full reward from guessing state 1 is optimal if the agent

initially assigns it probability less than µ∗, for beliefs above this value, the reward from

guessing state 1 must decrease. Now, even if the agent’s initial belief that θ = 1 is high, it

will eventually decrease below µ∗ with positive probability. On the other hand, offering the

full reward when guessing state 1 after this time would defeat the initial purpose of starting

with the lower reward—doing so would lead the agent to shirk and lie. In order to prevent

this from happening, the principal must keep the reward low across the time horizon.

4 Preliminaries

In this section, we provide a preliminary analysis for simplifying the space of agent (effort)

strategies and the set of contracts the principal needs to consider. Later in Section 5, we

will utilize these simplifications to show the optimality of scoring rules in general dynamic

environments.

4.1 Stopping Strategies

We now show that one of the agent’s optimal strategies for exerting effort is a simple stopping

strategy, simplifying the principal’s objective to maximization of the agent’s stopping time.

The agent can generally choose arbitrary, complex strategies for exerting effort. For

example, the agent could wait for several periods before starting or randomize over such

decisions. Nevertheless, we note that it is without loss for the agent to use a stopping

strategy τ—that is, slightly overloading the notation τ as a stopping time under a stopping

strategy, we can assume that the agent chooses to exert effort at every time t ≤ τ , conditional

on not having received any Poisson signal.

Lemma 1 (Optimality of Stopping Strategies).

Given any contract R and any best response of the agent with maximum effort length zR
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conditional on not receiving any Poisson signal,4 there exists a stopping strategy τR with

τR ≥ zR that is also optimal for the agent.

Note that the maximum effort duration conditional on no Poisson signal arrival uniquely

determines the information acquired by the agent. Moreover, whenever the agent works

longer, the aggregated information acquired is Blackwell more informative, implying that

the principal’s utility following the agent’s information acquisition is higher for any possible

(principal) utility function. Therefore, Lemma 1 implies that the principal would seek to

implement—and the agent would be willing to use—stopping strategies. Hence, it is without

loss of generality to focus on them.

The proof for Lemma 1 is simple. Given any contract R and any strategy of the agent

(for instance, if the agent were potentially pausing effort for some time and resuming ef-

fort afterward), the agent does weakly better by front-loading effort to receive information

earlier since this weakly increases his expected reward from the principal without increas-

ing expected cost. Therefore, the resulting stopping strategy with the same effort length

conditional on not receiving Poisson signals must also be optimal.

Principal’s objective By restricting attention to stopping strategies, the principal’s

payoff given any contract R is uniquely determined by the stopping time τR. Moreover, re-

gardless of the principal’s valuation function v for making decisions, the principal’s expected

payoff is higher when τR is longer. As a result, the principal’s problem simplifies to designing

a contract R that maximizes the stopping time τR subject to the budget constraint.

An important observation given this alternative principal’s objective is that the design of

the optimal contracts does not depend on the details of the principal’s valuation function v.

Instead, it only depends on the information arrival rates, and the relative ratio between the

cost of effort and the budget constraints on rewards.

4.2 Menu Representation

As per the discussion in Section 4.1, we henceforth assume that the agent always chooses

a stopping strategy for exerting effort. This observation further simplifies communication

between the parties in the optimal contract. In particular, the agent need not report whether

he has exerted effort in the current period. Instead, it is sufficient to incentivize the agent

to truthfully report s = G or s = B immediately once observed, implicitly assuming that

the agent indeed exerts effort in every period before the report.

4If the agent uses randomized strategies, zR is the maximum effort length among all realizations.
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We describe this menu representation for the dynamic contracts the principal might

offer. The principal commits to a sequence of menu options at time 0; at any time t ≤ T ,

the agent can make a one-time, irrevocable choice from the set of available menus based on

his posterior belief. Lemma 2 formalizes this menu representation.

Given any reward function r : Θ → [0, 1], let

u(µ, r) ≜ Eθ∼µ[r(θ)]

be the agent’s expected utility given reward r when his belief is µ. In the binary state

model (i.e., Θ = {0, 1}) we consider in this paper, we also represent the reward function as

r = (r0, r1), where r0 is the reward for state being 0 and r1 is the reward for state being 1.

Lemma 2 (Menu Representation).

Any dynamic contract R implementing optimal stopping time τR is equivalent to a sequence

of menu options {rst }t≤τR,s∈S∪{rNτR} where rst : Θ → [0, 1]. At any time t ≤ τR, the agent can

make a one-time choice for the menu option r∗ from the subset Rt ≜ {rst′}t≤t′≤τR,s∈S∪{rNτR},
with the agent rewarded according to r∗ after time T . Moreover, at any time t, the utility

of the agent with belief µs
t is maximized by picking the menu option rst , i.e., for any t ≤ τR

and s ∈ S, or for t = τR and s = N ,

u(µs
t , r

s
t ) ≥ u(µs

t , r), ∀r ∈ Rt. (IC)

Appendix A.1 contains the proof of Lemma 2. Note that in Eq. (IC), the agent’s incentives

are uni-directional in time. That is, it is sufficient to consider the incentive constraints where

the agent does not prefer to deviate from a truthful report when receiving an informative

signal later.

Lemma 2 dramatically simplifies the space of contracts the principal needs to consider.

For example, it allows us to convert the design of the optimal contracts into a sequence

of linear programs such that the sequence of menu options in the optimal contract can be

computed efficiently. We provide the details of the computational methods in Appendix A.2.

To simplify the exposition in later sections, given the menu representation in Lemma 2

for any contract R, for any time t and any signal s ∈ S, we denote ust (R) ≜ u(µs
t , r

s
t ) as the

agent’s utility for not exerting effort in any time after t when his current belief is µs
t . We

also omit R from the notation when it is clear from the context. Moreover, for any t < τR,

we denote

rNt = argmax
r∈Rt

u(µN
t , r)
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as the menu option the agent would choose at time t if his belief were µN
t . Let uNt (R) ≜

u(µN
t , rNt ).

5 Optimal Contracts as Scoring Rules

This section presents our main results on the implementation of the optimal contract as a

static scoring rule in three canonical environments: stationary, perfect-learning and single-

signal. Section 6 provides a partial converse to these results by showing that dynamic

structures can be necessary to implement the optimal contract when all three conditions

are violated. The main idea for the arguments in this section is to decompose the dynamic

problem into multiple static problems. Specifically, we will consider a continuation game at

any time t where the agent only has two choices: To shirk forever or exert effort according

to a specific strategy. Such continuation games essentially coincide with the static model

introduced in Section 3.1. We will show that for any dynamic contract R, there exists a

scoring rule P that provides stronger incentives for the agent to exert effort in all contin-

uation games, which further implies that the agent has stronger incentives to exert effort

for a longer duration given scoring rule P in the dynamic model. Appendix B contains the

missing proofs in this section.

Continuation Game For any time 0 ≤ t ≤ t′ ≤ T , let Gt,t′ be the continuation game

between t and t′. Specifically, the continuation game Gt,t′ is a static game with prior

belief µN
t−∆. Moreover, the agent has binary effort in the continuation game, i.e., the agent

can choose either to (a) not exert effort or (b) follow the strategy of exerting effort until

time t′ (including time t′) or a Poisson signal arrives. The cost of effort in this continuation

game is c∆ times the expected number of periods the agent exerts effort between t and

t′. Note that at any time t in the dynamic environment, the agent has incentives to exert

effort at time t if there exists t′ ≥ t such that the agent has incentives to exert effort in

the continuation game Gt,t′ . For any contact R with stopping time τR, we say Gt,τR is the

continuation game at time t for contract R. In the rest of the paper, we omit the subscript

of τR from the notation when the contract R is clear from context.

In the continuation game, for t′ ≥ t, let fs
t (t

′) be the probability mass function of

receiving a Poisson signal s at time t′ conditional on not receiving Poisson signals before

time t, and let F s
t (t

′) be the corresponding cumulative distribution function. Given any

contract R with a sequence of menu options {rst }t≤τR,s∈S ∪ {rNτR}, we refer to uNt−∆(R) =
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u(µN
t−∆, r

N
t−∆) as the no information payoff of the agent, and

Ut(R) ≜

(
1−

∑
s∈S

F s
t (τR)

)
· u(µN

τR
, rNτR) +

τR∑
t′=t

∑
s∈S

u(µs
t′ , r

s
t′) · fs

t (t
′)

as the continuation payoff of the agent in the continuation game Gt. We also omit R in the

notations if it is clear from context. In the continuation game Gt, the agent has incentives

to exert effort if the payoff difference Ut(R)− uNt−∆(R) is at least his cost of effort.

5.1 Stationary Environment

The simplest case of interest is the stationary environment, where the agent’s no information

belief µN
t = D for all t ≤ T . In this simple case, all continuation games at any time t share

the same prior belief. As illustrated in Proposition 1, the optimal scoring rules for all

continuation games are the same. Therefore, the tension over time does not exist. In this

case, it is straightforward to show that the optimal contract has an implementation as a

V-shaped scoring rule with kink at the prior D, which is also the optimal scoring rule in

the static model.

Theorem 1 (Stationary Environment).

An optimal contract R exists with an implementation as a V-shaped scoring rule with kink

at prior D in the stationary environment.

5.2 Perfect-learning Environment

Outside of the stationary environment, the no information belief µN
t of the agent drifts

over time, meaning that the principal cannot provide optimal incentives to the agent in

every continuation game. This section focuses on the perfect-learning environment where

the agent fully learns the state upon receiving a Poisson signal. We show that the optimal

contract has an implementation as a scoring rule for this environment. However, since the

principal’s goal is to incentivize dynamic effort choices, the particular optimal scoring rule

will differ from the optimal scoring rule in the static model.

Theorem 2 (Perfect-learning Environment).

An optimal contract R exists with an implementation as a V-shaped scoring rule with pa-

rameters r0 = 1 and r1 ∈ [0, 1] in the perfect-learning environment.

Note that, unlike the stationary environment, although the optimal contract has an

implementation as a static scoring rule, the kink of the scoring rule may not be at the
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Figure 3: The red lines are the agent’s utility uN
t−∆ for not exerting effort, and the

blue curve is the agent’s utility U+
t from exerting effort in at least one period, both

as a function of the no information belief µN
t−∆.

prior D. In particular, the kink of the scoring rule depends on the parameter r1, chosen

to balance the agent’s incentive to exert effort at both time 0 and the stopping time τR.

This observation illustrates the phenomenon that, despite the optimal contract having an

implementation as a scoring rule, it does not coincide with the optimal scoring rule from

the static model, and the dynamics in the effort choices still affect the design of optimal

contracts.

Next, we show how to identify the optimal parameter r1 in the perfect-learning environ-

ment. We first ignore the constraint imposed by the time horizon T momentarily. Given

a V-shaped scoring rule P with parameters r0 = 1 and r1 ∈ [0, 1], recall that uNt is the

agent’s utility of from not exerting effort after time t. Let U+
t be the optimal utility of

the agent, with respect to the prior belief µN
t−∆, from exerting effort in at least one period

starting from time t (including t). By the Envelope Theorem, U+
t is convex in the no in-

formation belief µN
t−∆ with its derivative between −1 and r1. We let µ(r1) = µ̄(r1) = 2

if U+
t < uNt−∆ for all t ≥ 0. Otherwise, let µ(r1) = min{µN

t , t ≥ 0 : U+
t ≥ uNt−∆} and

µ̄(r1) = max{µN
t , t ≥ 0 : U+

t ≥ uNt−∆}. The agent has incentives to exert effort at time t

given scoring rule P if and only if µN
t ∈ [µ(r1), µ̄(r1)]. See Figure 3 for an illustration. In

particular, the agent has incentives to exert effort at time 0 if and only if D ∈ [µ(r1), µ̄(r1)].

Lemma 3. Both µ(r1) and µ̄(r1) are weakly decreasing in r1.

That is, by increasing the reward r1 for prediction state 1 correctly in the scoring rule,

the agent has incentives to exert effort for longer, i.e., µ(r1) is smaller, but the agent has a

weaker incentive to exert effort at time 0, i.e., µ̄(r1) is smaller. This tension illustrates an

interesting dynamic effect in our model when the time horizon T is sufficiently large. That

is, there exist µ1 > µ2 > µ3 such that the agent can be incentivized to work when either
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the principal seeks to have the no information belief drift from (a) µ1 to µ2 or (b) µ2 to µ3,

but not when seeking to have this belief drift from µ1 to µ3.

Let µ∗ = maxr{µ̄(r) : µ̄(r) ≤ 1}. That is, µ∗ is the maximum belief of the agent that

can be incentivized to exert effort given any scoring rule. Thus, we can focus on the case

where D ≤ µ∗. When there is a time horizon constraint T for exerting effort, let rT = 1 if

µ(1) > µN
T and let rT ∈ [0, 1] be the minimum parameter such that µ(rT ) = µN

T otherwise.

Proposition 2 (Optimal Scoring Rule).

In the perfect-learning environment, no contract incentivizes the agent to exert effort if

D > µ∗ or D < µ(1). Otherwise, the optimal parameter r1 in a V-shaped scoring rule is

the maximum value below rT such that µ̄(r1) ≥ D.

Intuitively, the optimal parameter r1 maximizes the stopping time subject to the con-

straint that the agent has incentives to exert effort at time 0.

Now we illustrate the ideas behind the proof of Theorem 2. We first show that in

perfect-learning environments, it is without loss of optimality to consider contracts where

the menu options provide a maximum reward to the agent for receiving a bad news signal

or no Poisson signal at all when the state is 0. Recall that 0 is the state that the agent’s

posterior belief drifts to absent a Poisson signal.

Lemma 4. In the perfect-learning environment, for any prior D and any signal arrival prob-

abilities λ, there exists an optimal contract R with a sequence of menu options {rst }t≤τR,s∈S∪
{rNτR} such that rBt = rNτR = (1, 0) for any t ≤ τR.

Intuitively, for any contract R with stopping time τR, we consider another dynamic

contract R̄ that rewards the agent the maximum amount of 1 following state 0 conditional on

the event that the agent receives a bad news signal at any time before τR or no Poisson signal

until time τR. In the perfect-learning environment, such an event occurs with probability 1

if the state is 0. Therefore, whenever the state is 0, the agent enjoys the full increase in

rewards in any continuation game Gt for exerting effort. By contrast, the increase in the

expected reward when not exerting effort in the continuation game Gt is at most the prior

probability of state 0 times the reward increase. Thus, the agent has stronger incentives to

exert effort in all continuation games given contract R̄, which implies that contract R̄ must

also be optimal in the dynamic model.

Next, we show that offering a single menu option for rewarding good news signals is also

sufficient. Intuitively, the dynamic incentives of the agent imply that in any contract R, the

agent’s reward for receiving a good news signal must decline over time. We show that by

decreasing earlier rewards to make the agent’s utility from early stopping sufficiently low

22



and increasing later rewards to make the reward from continuing effort sufficiently high,

the resulting contract has an implementation as a scoring rule, and the agent’s incentive

for exerting effort increases weakly in all continuation games given the new contract. This

idea is illustrated formally in the following proof.

Proof of Theorem 2. By Lemma 4, it is without loss of optimality to focus on contract R

with a sequence of menu options {rst }t≤τR,s∈S ∪ {rNτR} such that rBt = rNτR = (1, 0) for any

t ≤ τR. In addition, since signals are perfectly revealing, it is without loss to assume that

rGt,0 = 0 and the incentive constraints imply that rGt,1 is weakly decreasing in t.

Let t̂ ∈ [0, τR] be the maximum time such that an agent with no information belief

µN
t̂

weakly prefers menu option rG
t̂

compared to rNτR . Since both µN
t and rGt,1 are weakly

decreasing in t, an agent with posterior belief µN
t weakly prefers rGt′ compared to rNτR for

any t, t′ ≤ t̂, and weakly prefers rNτR compared to rGt′ for any t, t′ > t̂. Now consider another

contract R̂ that offers only two menu options, rG
t̂
and rNτR , at every time t ≤ τR. Contract R̂

can be implemented as a V-shaped scoring rule with parameters r0 = 1 and r1 = rG
t̂,1

∈ [0, 1].

Moreover, at any time t ≤ τR,

• if t > t̂+∆, in the continuation game Gt,τR , the agent’s utility for not exerting effort

is the same in both contract R and R̂ because the agent with no information belief

µN
t−∆ will choose the same menu option rNτR . However, the agent’s utility for exerting

effort is weakly higher in contract R̂ since the reward rGt,1 from receiving a good news

signal at time t weakly decreases in t.

• if t ≤ t̂ +∆, in the continuation game Gt,τR , by changing the contract from R to R̂,

the decrease in agent’s utility for not exerting effort is exactly µN
t−∆(r

G
t−∆,1 − rG

t̂,1
) by

changing the optimal menu option for no information belief µN
t−∆ from rGt−∆ to rG

t̂
.

However, the decrease in the agent’s utility for exerting effort in Gt,τR is at most

µN
t−∆(r

G
t−∆,1 − rG

t̂,1
) since the decrease in reward for receiving a good news signal G is

at most rGt−∆,1 − rG
t̂,1

and it only occurs when the state is 1.

Therefore, given contract R̂, the agent has stronger incentives to exert effort in all contin-

uation games Gt,τR with t ≤ τR, which implies that τR̂ ≥ τR and hence contract R̂ is also

optimal.

5.3 Single-signal Environment

In this section, we consider the single-signal environment where the agent’s belief drifts

towards 0 in the absence of a Poisson signal and jumps towards 1 when a Poisson signal
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Figure 4: The red lines are the agent’s utility uN
t−∆ for not exerting effort, and the

blue curve is the agent’s utility U+
t from exerting effort in at least one period, both as

a function of the no information belief µN
t−∆. The black curve is the agent’s utility for

not exerting effort in the alternative scoring rule with additional menu option (z0, z1).

arrives. In the single-signal environment, we do not assume that the signals are fully

revealing.

Theorem 3 (Single-signal Environment).

An optimal contract with an implementation as a scoring rule exists in the single-signal

environment.

Note that in the single-signal environment, although the optimal contract can be im-

plemented as a static scoring rule, it may not be implementable as a V-shaped scoring rule

when the signals are not fully revealing. Put differently, the principal may not want to

simply let the agent guess the state and reward the agent only following a correct guess. By

contrast, the principal may benefit from rewarding the agent even when the guess is wrong.

Consider an interpretation of the minimum reward across the two states as the “base

reward” and the difference between the rewards as the “bonus reward.” From this per-

spective, our results indicate that it may be necessary to consider scoring rules where the

base reward is strictly positive. This observation may seem counterintuitive, as providing

a strictly positive base reward strictly decreases the maximum bonus reward for the agent

due to the budget constraint. In principle, providing a positive base reward should lower

the agent’s utility increase when correctly guessing the state and, hence, subsequently lower

the agent’s incentive for exerting effort.

The correct intuition is as follows: providing a strictly positive base reward to the

agent at time t only decreases the agent’s incentive to exert effort at time t; however, it

increases the agent’s incentive to exert effort at earlier times t′ < t since the agent may

expect high rewards for exerting effort, even though he might make mistakes in guessing the
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states after receiving (imperfectly informative) Poisson signals. This modification benefits

the principal if the agent’s incentive constraint for exerting effort initially binds at time 0,

but becomes slack at intermediate time t ∈ (0, τR). As illustrated in Figure 4 and in

Section 5.2, by implementing the optimal V-shaped scoring rule, the agent’s incentive for

exerting effort is binding only at the extreme time 0 with belief D = µ̄(r1) and time τR

with belief µN
τR

= µ(r1). In this case, since the signals are not perfectly revealing, there

may exist a time t such that µG
t < D. By providing an additional menu option with strictly

positive base reward in the scoring rule to increase the agent’s utility at beliefs µG
t (e.g.,

the additional menu option (z0, z1) illustrated in Figure 4), the agent’s incentive constraint

for exerting effort at time 0 is relaxed and the contract thus provides the agent incentives

to exert effort following more extreme prior beliefs without influencing the stopping belief

µ(r1).

We illustrate the main ideas for Theorem 3. Note that given any (static) scoring rule,

the utility uNt of the agent from not exerting effort is a convex function of his no information

belief µN
t (see Lemma 8). Therefore, to show that the optimal contract can be implemented

as a scoring rule, we first show that it is without loss to focus on dynamic contracts where

the uNt is convex in µN
t .

Lemma 5 (Convexity in Utilities).

In the single-signal environment, an optimal contract exists with the no-information utility

uNt convex in µN
t .

Intuitively, in the optimal contract, if the no-information utility is not convex, one of

the following cases holds at time t̄, the earliest time such that the utility is non-convex:

• the agent’s incentive for exerting effort is slack at time t̄ + ∆. In this case, we

can increase the no-information utility at time t̄ by increasing the rewards in menu

option rNt such that either (a) the incentive for exerting effort at time t̄+∆ will bind,

or (b) the no-information utility will become convex at t̄.

• the agent’s incentive for exerting effort is slack at time t̄ + ∆. In this case, the

combination of the no-information utility function’s non-convexity and the contract’s

incentive constraint actually implies that the agent will have a strict incentive to stop

exerting effort at time t̄. See Figure 7 in Appendix B.3 for an illustration.

Note that although the convexity in no-information utility function implies that the

optimal contract has an implementation as a scoring rule, it does not necessarily imply

that the resulting scoring rule must satisfy the ex-post budget constraint or the ex-post

individual rationality constraint. For example, consider a convex no-information utility
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10 µN
t̂

Figure 5: The black curve is the convex no-information utility of the agent, and t̂ is
the minimum time with a bounded tangent line (red line). The thick dashed line is
the no-information utility of the agent given a feasible scoring rule that offers a menu
option that corresponds to the red line instead of the black curve for belief µ ≥ µN

t .

function uNt = (µN
t )2. A simple dynamic contract that implements this no-information

utility function is to offer a constant reward (µN
t )2 at time t regardless of the realization of

the state. However, if the principal wants to implement this utility function using a static

scoring rule, by Lemma 8, the menu option for belief µ ∈ [0, 1] must be (−µ2, 2µ − µ2),

which violates the ex post individual rationality constraint.

Primarily, a violation of the ex-post budget constraint or the individual rationality

constraint emerges because the no-information utility function is too convex. In this case, we

can flatten the no-information utility by decreasing the reward to the agent at earlier times.

We can show that by flattening the no-information utility, the decrease in no-information

utility is weakly larger than the decrease in continuation payoff in all continuation games,

and hence, the agent has stronger incentives to exert effort. Figure 5 illustrates this idea,

with details provided in Appendix B.3.

6 Optimality of Dynamic Contracts

This section shows that the optimal scoring rule must be dynamic when (i) signals are noisy

and (ii) the drift is sufficiently slow. More precisely, we consider cases where both good

and bad news signals can arrive with strictly positive probability if the agent exerts effort.

That is, we have λG
1 > λG

0 > 0 and 0 < λB
1 < λB

0 . Recall that we have assumed that

λG
1 + λB

1 > λG
0 + λB

0 , meaning that “no news is bad news.” Taking the drift to be slow

means that the above difference is small. Signals being noisy means that they do not reveal

the state.

Let µλ,c ≜ min{1
2 ,

c
λG
1 −λG

0
} and let Tλ,D,c be the maximum time such that µN

Tλ,D,c−∆ ≥
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µλ,c. Intuitively, Tλ,D,c is the maximum calendar time such that the agent can be incen-

tivized to exert effort in any contract when the prior is D.

Lemma 6. The stopping time τR satisfies τR ≤ Tλ,D,c, given any prior D ∈ (0, 1), arrival

rates λ, cost of effort c, and contract R that satisfies the budget constraint.

Appendix C contains this section’s missing proofs.

Theorem 4 (Strict Suboptimality of Scoring Rules).

Given any prior D ∈ (0, 12), any cost of effort c, and any constant κ0 > 0, 1
4∆ ≥ κ̄1 > κ1 > 0,

there exists ϵ > 0 such that for any T ≥ Tλ,D,c and λ satisfying

• λG
1 − λG

0 ≥ 1
D (c+ κ0); (sufficient-incentive)

• λB
1 , λ

B
0 , λ

G
0 , λ

G
1 ∈ [κ1, κ̄1]; (noisy-signal)

• λG
1 + λB

1 ∈ (λG
0 + λB

0 , λ
G
0 + λB

0 + ϵ), (slow-drift)

any static scoring rule is strictly suboptimal.

Theorem 4 provides sufficient conditions that necessitate the use of complex dynamic

structures in the optimal contract to incentivize dynamic effort. The condition that T ≥
Tλ,D,c implies that the time horizon T will not be a binding constraint for the agent to

exert effort. The sufficient incentive condition avoids trivial solutions by ensuring that the

cost of effort c is sufficiently small compared to the difference in arrival rates of the good

news signal, so that the agent has incentives to exert effort for a strictly positive length

of time in the optimal contract. The noisy-signal condition rules out the perfect-learning

environment and the single-signal environment, and the slow-drift condition rules out the

stationary environment. Moreover, the single-signal environment can also be viewed as

the extreme opposite of the slow-drift condition, since the difference in arrival rates of the

signals is maximal and the belief drifts to 0 quickly in the absence of a Poisson arrival.

A substantial assumption that appears harmless is that D ∈ (0, 12). Note that combining

this with our restriction to environments where the belief absent a Poisson signal drifts

towards 0, our theorem only applies to environments where the agent’s posterior belief

absent a Poisson signal becomes more polarized towards the more likely states given the

prior belief. This restriction ensures that the following myopic-incentive contract we define

is incentive compatible for the agent and satisfies the budget constraints.

Definition 3 (Myopic-incentive Contract).

When prior D ∈ (0, 12), a contract R with menu options {rst }t≤τR,s∈S ∪ {rNτR} is a myopic-

incentive contract if rNτR = rGt = (1, 0) and rBt = (
µN
t

1−µN
t
, 0) for any t ≥ 0.
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µN
t

1

0 1

µN
t

1−µN
t

Figure 6: Illustration of myopic-incentive contract. The solid line is the expected
reward of the agent, as a function of his belief, for not exerting effort and reporting
his belief truthfully at time t.

Intuitively, the sequence of menu options offered by the myopic-incentive contract is such

that at any time t, the agent with belief µN
t is indifferent between all menu options offered at

time t. See Figure 6 for an illustration. The condition that the belief absent a Poisson signal

becomes increasingly polarized implies that the rewards in menu options decrease over time.

This property is necessary for the constructed contract to be incentive-compatible for the

agent.

Note that the construction of menu options in the myopic-incentive contract at any

time t resembles the V-shaped scoring rules that are optimal for the static model with

prior µN
t . However, the myopic-incentive contract does not provide the optimal incentive

for the agent to exert effort in all continuation games. This observation holds because, in

the continuation game Gt, the agent may receive a Poisson signal after time t, when the

reward for reporting the received signal decreases. Thus, the myopic-incentive contract may

not always be optimal for the principal. Nonetheless, we show that when the drift of belief

is sufficiently slow, the myopic-incentive contract provides incentives close to the optimal

contract.

Lemma 7 (Approximate Optimality of Myopic-incentive Contracts).

Given any prior D ∈ (0, 12), any cost of effort c, any constant κ1 > 0, and any η > 0, there

exists ϵ > 0 such that for any T ≥ Tλ,D,c and any λ satisfying that λs
θ ≤ 1

4∆ for all s ∈ S

and θ ∈ {0, 1}, and

• λG
1 − λG

0 ≥ 1
D (c+ κ0); (sufficient-incentive)

• λG
1 + λB

1 ≤ λG
0 + λB

0 + ϵ, (slow-drift)
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letting R be the myopic-incentive contract (Definition 3), we have µN
τR

− µN
Tλ,D,c

≤ η.

When the drift of no information belief is sufficiently slow compared to the arrival rates

of the Poisson signals, with sufficiently high probability, the agent will receive a Poisson

signal before the no information belief drifts far away from his initial belief. In this case,

the decrease in rewards over time in the myopic-incentive contract does not significantly

weaken the agent’s incentive for exerting effort. Hence, the myopic-incentive contract is

approximately optimal for the principal.

By contrast, if the principal instead uses a contract that can be implemented as a scoring

rule, given stopping time τR∗ in the optimal contract R∗, this scoring rule must be close to

the optimal scoring rule in the continuation game Gt for any t that is sufficiently close to τR∗

in order to incentivize the agent to exert effort in continuation game Gt. However, when the

signals are noisy, as illustrated in Appendix A.4, such scoring rules fail to provide sufficient

incentives for the agent to exert effort at time 0, leading to a contradiction. Intuitively,the

myopic-incentive contract avoids this conflict in incentives by providing higher rewards to

the agent upon receiving a bad new signal B without affecting the agent’s incentive to

report the acquired information truthfully. In particular, higher rewards upon Poisson

signal arrivals strengthen the agent’s incentives to exert effort at any time t.

6.1 Optimal Dynamic Contracts

Lemma 7 shows that the myopic-incentive contract is approximately optimal when the drift

is slow and the belief absent a Poisson signal is polarizing. Although the stated contract is

generally not fully optimal, a similar decreasing reward structure does, in fact, characterize

the principal’s exact optimum.

To simplify notation, first recall that any menu option r has a representation as a tuple

(r0, r1). For any pair of menu options r, r′, we define r′ ⪯ r if r′0 ≤ r0 and r′1 ≤ r1. That is,

r′ ⪯ r if r′ is at most r in all components.

The qualitative features in myopic-incentive contracts that preserve in the optimal dy-

namic contracts are

1. decreasing rewards for “bad news” signals. That is, the optimal sequence of rewards

for signal B, denoted as rBt , satisfies the condition that rBt ⪯ rBt′ for any t ≤ t′ ≤ τR.

Moreover, this decrease in rewards has a particular structure: the contract initially

maintains the maximum score for state 0 and reduces the reward for state 1. This

phase is followed by a decrease in the reward for state 0 while maintaining the mini-

mum score for state 1.
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2. maximal rewards for “good news” signals subject to incentive constraints. That is,

the rewards for receiving “good news” signals are uniquely determined by the “bad

news” signals. Specifically, the reward rGt at time t is determined by finding the

reward vector that maximizes the expected reward for posterior belief µG
t , subject

to the constraints that the no-information belief µN
t′ weakly prefers the option rBt′

over rGt for any time t′ ≤ t.

The optimality of contracts with these features are shown in Theorem 5.

The only feature in myopic-incentive contracts that does not extend to optimal contracts

is the rate of decrease for rewards for “bad news” signals. In myopic-incentive contracts,

the rewards for “bad news” signals are chosen such that the menu options (rGt , r
B
t ) offered

at time t consist of a V-shaped scoring rule with a kink at posterior belief µN
t . Such a rate

of decrease is shown to be approximately optimal (Lemma 7), but it is strictly suboptimal

in general. For optimal contracts in general environments, the optimal rate of decrease

for rewarding bad news signals depends on the primitives and may not admit closed-form

characterizations. However, such rewards can be computed efficiently by solving a family

of linear programs (Appendix A.2).

Theorem 5 (Optimal Dynamic Contracts).

For any prior D and any signal arrival rates λ, there exists an optimal contract R with

optimal stopping time τR and a sequence of menu options {rst }t≤τR,s∈S∪{rNτR} with rNτR = rBτR
such that

1. decreasing rewards for signal B: rBt′ ⪯ rBt for all t′ ≥ t; and rBt,0 = 1 if rBt,1 > 0;

2. maximal rewards for signal G: for any t ≤ τR,

rGt = argmax
r:Θ→[0,1]

u(µs
t , r)

s.t. u(µN
t′ , r

B
t′ ) ≥ u(µN

t′ , r), ∀t′ ∈ [0, t].

Compared to the menu representation in Lemma 2, the simplification in Theorem 5

is the optimality of providing a decreasing sequence of rewards when receiving a bad news

signal B in both states, and uniquely determines the rewards for good news signals based on

the rewards for bad news signals. Note that the rewards for bad new signals is only weakly

decreasing. For example, in the special case of perfect-learning environments, Theorem 2

shows that the optimal contract is attained by keeping the rewards rBt unchanged over time.
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7 Extensions and Discussions

We now turn to some extensions of the main model, particularly those related to randomized

contracts, non-stationary information acquisition, and ex-ante budget constraints. We show

how to generalize our results and techniques to such environments. Finally, we conclude

our paper and propose several open questions in Section 7.4.

7.1 Randomized Contracts

Although deterministic contracts are appealing for practical applications, in some cases, a

principal could commit to randomized contracts with the help of a public randomization

device. To speak to this possibility, let ς = {ςt}t≤T be a sequence of random variables

with ςt drawn from a uniform distribution in [0, 1]. A randomized contract is a mapping

R(·|ς) : HT ×Θ → [0, 1].

Crucially, in randomized contracts, at any time t, the history of the randomization device

{ςt′}t′≤t is publicly revealed to the agent before determining his choice of effort or the

message sent to the principal. The randomization revealed before t affects the agent’s

incentives after time t, and without it, such contracts reduce back to deterministic contracts.

Given randomized contracts, the agent’s optimal strategy need not be a simple stopping

strategy. In particular, the agent may decide whether to work or not depending on the public

randomization’s past realizations. The agent may also strategically delay exerting effort to

wait for the realization of the public randomization. As a result, the simplified objective of

maximizing the stopping time of the agent is not appropriate for randomized contracts, and

we need to consider the original objective of maximizing expected payoff E[v(a, θ)] subject

to the budget constraint.

When randomized contracts are allowed, principal objective functions could exist under

which randomized contracts are beneficial. The main intuition is that at some time t, the

principal can randomly inflate or decrease the rewards of the agent in the menu options,

setting the probability of a decrease to be much larger to preserve the agent’s dynamic

incentives for truthful reporting. Then, after time t, with a small probability, rewards

inflate, and the agent has incentives to exert effort for longer without a Poisson signal

arrival— i.e., the realized stopping time increases. Such a modification is beneficial if the

principal only values extreme posterior beliefs.

To illustrate this intuition more formally, consider an environment where learning is

perfect and only good news signal G arrives with positive probability. By Theorem 2,
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under deterministic contracts, a V-shaped scoring rule with parameters r0 = 1 and r1 ∈ [0, 1]

implements the optimal contract R. Moreover, when the time horizon T is sufficiently large,

r1 is chosen such that the agent with prior belief D is indifferent between exerting effort

or not, and it is easy to construct instances where r1 < 1. Let τR be the stopping time in

the optimal deterministic contract, and let µN
τR

be the stopping belief when the agent never

receives any Poisson signals.

Now, suppose the principal faces a binary decision to make at time T . That is, A =

{0, 1}. The payoff of the principal is v(0, θ) = 0 for all θ ∈ Θ, and v(1, 0) = 1, v(1, 1) =

−1−µN
τR

µN
τR

; plainly, the principal only seeks to change her action from 1 to 0 if the posterior

belief is below µN
τR
. In this case, the principal’s benefit from acquiring information from the

agent using a deterministic contract is 0. However, the following argument shows that the

principal’s payoff from a randomized contract can be strictly positive. Let δ ∈ (0, 1 − r1]

be the maximum number such that (1) the agent has strict incentives to exert effort until

time 2τR
3 in the absence of a Poisson signal given menu options (1, 0) and (0, r1 − δ); and

(2) the agent can be incentivized to exert effort given menu options (1, 0) and (0, r1 + δ)

when the prior belief is µN
τR
2

. Now consider the randomized contract R̂ that provides menu

options (1, 0) and (0, r1 − δ) from time 0 to τR
2 , and after time τR

2 , the principal offers

menu options (1, 0) and (0, r1 + δ) with probability ϵ2, offers menu options (1, 0) and (0, 0)

with probability ϵ, and offers the same menu options (1, 0) and (0, r1 − δ) with the rest

probabilities. It is easy to verify that with sufficiently small ϵ > 0, the agent still incentives

to exert effort at any time t ≤ τR
2 . Moreover, after time τR

2 , with probability ϵ2, the realized

menu options are (1, 0) and (0, r1 + δ), and the agent can be incentivized to exert effort to

a time strictly larger than τR in the absence of a Poisson signal. Therefore, randomized

contract R̂ provides a strictly positive payoff to the principal, outperforming all deterministic

contracts.

7.2 Non-invariant Environments

Our model assumes that the cost of acquiring information is fixed over time, as is the

mapping from states into signals when the agent exerts effort. On the other hand, many

of our techniques and results do not rely on these assumptions, particularly as we focus on

maximizing the incentive for the agent to exert effort. Our results extend unchanged if the

cost of exerting effort is c(t̃)∆, whenever the agent has exerted effort for t̃ units of time and

c(·) is a non-decreasing function. In this case, the agent’s strategy again without loss is a

stopping time, and identical arguments imply that scoring rules maximize the incentive to

exert effort under any of the three environments discussed.
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We can similarly allow for time dependence in the informational environment. Specif-

ically, we can allow for the arrival rates of signals at any time to depend on the amount

of effort the agent has exerted until that point. That is, suppose that if the agent has

exerted effort for t̃ units of time, then exerting effort produces a good news signal arrives

in state θ with probability λG
θ,t̃
∆, and a bad news signal with probability λB

θ,t̃
∆ (and no

signal with complementary probability). While seemingly minor, this modification induces

more richness in the set of possible terminal beliefs as a function of the effort history—for

instance, if the terminal beliefs are always in the set {p, p}, despite drifting over time.

Our proof techniques did not make use of the particular belief paths induced by constant

arrival rates and hence extend to this case, with the minor exception that Theorem 3 requires

µG
t to be weakly monotone as a function of time (a property that holds when the arrival rate

is constant). Otherwise, as long as parameters stay within each environment articulated in

Section 5, the proofs of these results extend unchanged.

7.3 Ex Ante Budget Constraints

In this paper, we require the principal’s budget constraint to be satisfied ex-post, and a

natural extension is to relax it by considering ex-ante budget constraints. Note that in our

model, we still need to impose limited liability on the agent—in other words, the reward

should satisfy r ≥ 0 ex-post. Suppose the ex-ante individual rationality constraint replaces

the ex-post limited liability constraint. In that case, there is no constraint on the rewards

for off-path behaviors of the agent. Hence, the principal can easily implement the first

best, where the agent’s total cost of effort equals the ex-ante budget, by designing contracts

that punish the agent for deviation. Therefore, we focus on the model with ex-ante budget

constraints and ex-post limited liability constraints.

We show that in the special case where the conditions in both perfect-learning environ-

ments and single-signal environments are satisfied, i.e., when λB
0 = λB

1 = λG
0 = 0 and only

λG
1 > 0, the optimal contract can also be implemented as a scoring rule. Appendix D.1

contains details for this claim. This observation illustrates that the optimality of static con-

tracts extends under ex-ante budget constraints under natural assumptions. We conjecture

that our result also extends when only conditions in one of the environments are satisfied,

although the formal arguments for this conjecture may require additional novel ideas.

By relaxing the ex-post budget constraints, we can also apply our results to models where

the principal values the rewards for the agent. In particular, when the principal values the

rewards, the problem can be decoupled into two orthogonal problems: (1) maximizing the

expected payoff from the decision problem subject to the ex-ante budget constraints and

(2) optimizing the budgets to maximize the expected utility of the principal. Our results
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under ex-ante budget constraints imply that even when the principal values the rewards,

the optimal contract can still be implemented as a scoring rule when only λG
1 > 0.

7.4 Conclusions

This paper has introduced a framework to consider optimal scoring rule design when the

agent faces an information acquisition problem that is fundamentally dynamic. Indeed,

natural stories for why information acquisition is costly involve some dynamic element—for

instance, a student deciding how long to work on coming up with a proof or counterex-

ample or researchers deciding how long to run tests to learn about a drug’s efficacy. Our

assumptions on information arrival are inspired by and generalized those from past work

on dynamic endogenous information acquisition; however, a fundamental difficulty in our

problem was the lack of any natural structure, such as stationarity, given arbitrary dy-

namic contracts. Such assumptions are often critical in similar exercises. Nevertheless, we

provided simple conditions such that the optimal dynamic contract is implementable by

a scoring rule and explained the extent to which these conditions are necessary for this

conclusion to hold.

There are many natural avenues for future work. For instance, since our goal was

to optimize among dynamic contracts in a setting with dynamic moral hazard, we have

neglected information arrival processes as general as those accommodated by Chambers

and Lambert (2021)—for instance, if the information the agent acquires over time relates

to what information will arrive in the future. While we found the analysis under the

particular class of information arrival processes considered tractable, we do not doubt that

similar conclusions could emerge under different information arrival processes. Finding a

richer class of tractable information arrival processes would also be necessary to allow for

more of an intensive margin for experimentation relative to what we have allowed. In these

cases, scoring rules may not be a natural class to consider, leading to the natural follow-up

question of whether there are other simple ways of understanding how the principal may

optimally leverage the dynamic nature of the problem.

Conversely, one may also be interested in these cases whether scoring rules incur sig-

nificant loss relative to optimal dynamic contracts. Our goal here has been to provide a

framework to study optimal contracts in dynamic settings, and we find further insights on

this agenda valuable.
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A Additional Preliminaries

A.1 Menu Representation

Proof of Lemma 2. By the revelation principle, it is without loss to focus on contracts where

the agent truthfully reports whether he exerts effort or not and the received signal at each

time t. That is, the message space at any time t is {0, 1} × {G,B,N} where 1 represents

exerting effort and 0 represents not exerting effort.

Next we construct the sequence of menu options {rst }t≤τR,s∈S ∪ {rNτR} that corresponds

to a contract R that induces truth-telling. Let τR be the stopping time of contract R. For

any time t ≤ τR, for any signal s ∈ S, let hst be the history of reports the agent sends if

he receives signal s at time t. That is, in history hst , the agent sends (1, N) before time t,

(1, s) at time t, and (0, N) after time t. Let hNτR be the history of reports the agent sends

if he didn’t receive any Poisson signal at all.

For any time t ≤ τR and any signal s ∈ S, let rst = R(hst , ·) and let rNτR = R(hNτR , ·). Given

this constructed sequence of menu options, the incentive constraints in Eq. (IC) is satisfied

since contract R induces truth-telling. Moreover, it is easy to verify that the agent’s utility

for stopping effort at any time t ≤ τR is the same given both the menu representation

and the original contract R. Therefore, the stopping time of the agent given this menu

representation is also τR.

A.2 Efficient Algorithms for Computing Optimal Contracts

Let τ ≤ T be the stopping time in the optimal contract. We know that there exists a

contract R such that the agent has incentive to exert effort in all continuation Gt,τ with

t ≤ τ . Therefore, to compute the optimal contract, it is sufficient to enumerate all stopping

time τ and verify if there exists such a contract for incentivizing the agent to work until τ .

The optimal contract is the contract for the largest τ .

To show this, fixing a stopping time τ , we consider the menu representation in Lemma 2,

i.e, a sequence of menu options {rst }t≤τ,s∈S ∪ {rNτ }. Moreover, we construct additional

variables {rNt }t<τ to simplify the constraints we need in the optimization problem. For any

t ≤ t′ ≤ τ and s ∈ S, let fs
t (t

′) be the probability of receiving Poisson signal s at time t′

conditional on not receiving Poisson signals before time t. Let F s
t (t

′) be the corresponding

cumulative probability. The constraints for providing sufficient incentives for the agent to

38



exert effort is(
1−

∑
s∈S

F s
t (τ)

)
· u(µN

τ , rNτ ) +
τ∑

t′=t

∑
s∈S

u(µs
t′ , r

s
t′) · fs

t (t
′) ≥ u(µN

t−∆, r
N
t−∆)

for all t ≤ τ and s ∈ S. Moreover, the contract R is incentive compatible if

u(µs
t , r

s
t ) ≥ u(µs

t , r
s′
t′ )

for all t ≤ t′ ≤ τ and s, s′ ∈ S ∪ {N}. Note that since the utility function u(µ, ·) is a linear

function, in the discrete time model, the above set of constraints is a finite set of linear

constraints on the menu options. This implies that whether a solution exists and finding a

solution if it exists can be computed in polynomial time, and hence the optimal contract

can also be found in polynomial time.

A.3 Additional Review of Scoring Rules

A scoring rule is proper if it incentive the agent to truthfully report his belief to the principal,

i.e.,

Eθ∼µ[P (µ, θ)] ≥ Eθ∼µ

[
P (µ′, θ)

]
, ∀µ, µ′ ∈ ∆(Θ).

By revelation principle, it is without loss to focus on proper scoring rules when the principal

adopts contracts that can be implemented as a scoring rule.

Lemma 8 (McCarthy, 1956). For any finite state space Θ, a scoring rule P is proper if

there exists a convex function UP : ∆(Θ) → R such that

P (µ, θ) = UP (µ) + ξ(µ) · (θ − µ)

for any µ ∈ ∆(Θ) and θ ∈ Θ where ξ(µ) is a subgradient of UP .
5

A.4 Comparative Statics of Scoring Rules

As discussed in Section 3.1, the ideal situation cannot be implemented in dynamic contracts

since we claim that the optimal static scoring rule at time τ is not optimal at time t < τ .

However, this argument alone is insufficient since in earlier time, the agent is more uncertain

5Here for finite state space Θ, we represent θ ∈ Θ and µ ∈ ∆(Θ) as |Θ|-dimensional vectors
where the ith coordinate of θ is 1 if the state is the ith element in Θ and is 0 otherwise, and the ith
coordinate of posterior µ is the probability of the ith element in Θ given posterior µ.
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about the states, and hence is easier to be incentivized. In this appendix, we formalize this

intuition using a comparative statics on static scoring rules.

To simplify the exposition, we consider a specific static environment where if the agent

exerts effort, the agent may receive an informative signal in {G,B} that is partially infor-

mative about the state. Otherwise, the agent does not receive any signals and the prior

belief is not updated. Let fθ,s ∈ (0, 1) be the probability of receiving signal s conditional

on state θ. That is, signals are not perfectly revealing. We focus on the case when the prior

D < 1
2 .

Proposition 1 shows that the utility function of the optimal scoring rule is V-shaped

with a kink at the prior, that is, the optimal scoring rule offers the agent the following two

options: (0, 1) and ( D
1−D , 0). The agent with prior belief D is indifferent between these two

options. Moreover, any belief µ > D would strictly prefer (0, 1) and any belief µ < D would

strictly prefer ( D
1−D , 0).

Next we conduct comparative statics. The expected score increase for exerting effort

under the optimal scoring rule is

Inc(D) ≜ (1−D) · f0,B · D

1−D
+D · f1,G −D = D(f0,B + f1,G − 1).

Since f0,B > f1,B and f1,G > f1,B, we have f0,B + f1,G > 1. Therefore, the expected score

increase is monotone increasing in prior D. That is, the closer the prior is to 1
2 , the easier

to incentivize the agent to exert effort.

Next we conduct comparative statics on prior D′ by fixing the scoring rule to P be

optimal for D, i.e., P is the V-shaped scoring rule with kink at D. The expected score

increase for exerting effort given scoring rule P is

Inc(D′;D) ≜ (1−D′) · f0,B · D

1−D
+D′ · f1,G −D′

= D′(f1,G − 1− f0,B · D

1−D
) + f0,B · D

1−D
.

Since f1,G < 1, the expected payoff of the principal is strictly decreasing in prior D′.

Therefore, even though when prior is closer to 1
2 , it is easier to incentivize the agent to

exert effort, the optimal scoring rule for lower priors may not be sufficient to incentivize the

agent (by assuming that the cost of effort is the same in both settings).

A.5 Details Behind Section 3.2

Here we provide some additional details behind the calculations in Section 3.2. We note

that stopping and accepting contract (r0, 0) delivers payoff r0(1 − µN
t ); if, at time τ , the
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agent continues for a length ∆ and then stops, the payoff is:

−c∆+ (1− λG
1 µ

N
τ ∆)r0(1− µN

τ+∆) + λG
1 µ

N
τ ∆r1.

Imposing indifference yields:

r0
µN
τ − µN

τ+∆

∆
+ λG

1 µ
N
τ r1 − λG

1 µ
N
τ (1− µN

τ+∆)r0 = c

As ∆ → 0,
µN
τ −µN

τ+∆

∆ → µ̇N
τ ; substituting in for this expression and using continuity of

beliefs yields the expression for the stopping belief and the stopping payoff:

r0λ
G
1 µ

N
τ (1− µN

τ ) + λG
1 µ

N
τ r1 − λG

1 µ
N
τ (1− µN

τ )r0 = c.

Algebraic manipulations show this coincide with the expression from the main text.

We now solve for the agent’s value function, V (µN
t ), for all agent beliefs µN

t > µN
τ

(assuming the agent works until time τ). Writing out the HJB yields:

V (µN
t ) = −c∆+ λG

1 µ
N
t ∆r1 + (1− λG

1 µ
N
t ∆)V (µt+∆).

We obtain the following differential equation:

V ′(µN
t )λG

1 µ
N
t (1− µN

t ) = −c+ λG
1 µ

N
t (r1 − V (µN

t )).

The solution to this equation is as claimed in the main text.

B Optimal Contracts as Scoring Rules

B.1 Stationary Environment

Proof of Theorem 1. For any contract R with stopping time τR ∈ [0, T ], to show that there

exists a static scoring rule P such that the agent has incentive to exert effort at least until

time τR given static scoring rule P , it is sufficient to show that there exists a static scoring

rule P such that the agent has incentive to exert effort at any continuation game Gt for any

t ∈ [0, τR].

First note that to maximize the expected score difference for the continuation game

at any time t, it is sufficient to consider a static scoring rule. This is because at any time

t′ ∈ [t, τR], we can allow the agent to pick any menu option from time t to τR. This leads to a

static scoring rule where the agent’s expected utility at time t for stopping effort immediately
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is not affected but the continuation utility weakly increases. Finally, by Proposition 1, the

optimal static scoring rule that maximizes the expected score difference is the V-shaped

scoring rule P with kink at prior D.

B.2 Perfect-learning Environment

Proof of Lemma 3. Note that it is easy to verify that if there exists a belief such that the

agent is incentivized to exert effort, the intersection belief µ(r1) is such that the agent with

belief µ(r1) would prefer menu option (1, 0) to (0, r1) and µ̄(r1) is such that the agent with

belief µ̄(r1) would prefer menu option (0, r1) to (1, 0).

Consider the case of decreasing the reward parameter from r1 = z to r1 = z′ for

0 ≤ z′ < z ≤ 1. The agent’s utility for not exerting effort given menu option (1, 0)

remains unchanged, but the agent’s utility for exerting effort in at least one period decreases.

Therefore, µ(r1) weakly increases. Moreover, given posterior belief µN
t−∆, the agent’s utility

for not exerting effort given menu option (0, r1) decreases by µN
t−∆(z − z′), while the the

agent’s utility for exerting effort in at least one period decreases by at most µN
t−∆(z − z′)

since the reward decrease can only occur when the state is 1. Therefore, µ̄(r1) also weakly

increases.

Proof of Proposition 2. By Theorem 2, it is without loss to focus on contracts that can be

implemented as V-shaped scoring with parameters r0 = 1 and r1 ∈ [0, 1]. If D > µ∗ or

µ < µ(1), given any r1 ∈ [0, 1], we have D ̸∈ [µ(r1), µ̄(r1)] and hence the agent cannot be

incentivized to exert effort.

If D ∈ [µ(1), µ∗], if µ̄rT ≥ D, the agent can be incentivized to exert effort from time

0 to time T given parameter r1 = rT , and hence choosing r1 = rT must be optimal for

the principal. If µ̄rT < D, let r1 be the maximum number such that µ̄(r1) ≥ D. By the

monotonicity in Lemma 3, we have r1 ≤ rT . In this case, the time horizon is not a binding

constraint and the agent’s optimal strategy is to stop before time T . Therefore, the agent’s

optimal utility from exerting effort in at least one period is the same with and without the

time horizon constraint T . In this case, the agent has incentive to exert effort at any time

t ≥ 0 such that µN
t ≥ µ(r1). Moreover, this is optimal for the principal since r1 is chosen

to maximize µ(r1) subject to the effort constraint at time 0.

Proof of Lemma 4. For any contract R, by applying the menu representation in Lemma 2,

let {rst }t≤τR,s∈S be the set of menu options for receiving Poisson signals and let rNτR = (z0, z1)

be the menu option for not receiving any Poisson signal before the stopping time τR. Note

that in the perfect-learning environment, it is without loss to assume that rBt,1 = 0 for any
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t ≤ τR since the posterior probability of state 1 is 0 after receiving a Poisson signal B. Now

consider another contract R̂ with menus menu options {r̂st }t≤τR,s∈S\{N} and (ẑ0, ẑ1), where

(ẑ0, ẑ1) = argmax
z,z′∈[0,1]

z s.t. µN
τR
z′ + (1− µN

τR
)z = uNτR , (1)

and for any time t ≤ τR and any signal s ∈ S,

r̂st =

rst u(µs
t , r

s
t ) ≥ u(µs

t , (ẑ0, ẑ1))

(ẑ0, ẑ1) otherwise.

Essentially, contract R adjusts the reward function for no information belief µN
τR

such that

the reward for state being 0 weakly increases, the reward for state being 1 weakly decreases,

and the expected reward remains unchanged. Moreover, at any time t ≤ τR, contract R̂

allows the agent to optionally choose the addition option of (ẑ0, ẑ1) to maximize his expected

payoff for receiving an informative signal at time t.

It is easy to verify that for any signal s ∈ S\{N} and any time t ≤ τR, the expected

utility of the agent for receiving an informative signal s is weakly higher, and hence, at

any time t, the continuation payoff of the agent for exerting effort until time τR weakly

increases in contract R̂. Moreover, at any time t, the expected reward of the agent with

belief µN
t in contract R̂ satisfies ûNt ≤ uNt . This is because by our construction, at any time

t ≤ τR, fewer options are available to the agent in contract R̂ except the additional option

of (ẑ0, ẑ1), while u(µN
t , (z0, z1)) ≥ u(µN

t , (ẑ0, ẑ1)) since µN
t ≥ µN

τR
and both options (z0, z1)

and (ẑ0, ẑ1) gives the same expected reward for posterior belief of µN
τR
. Combining both

observations, we have τR̂ ≥ τR and R̂ is also an optimal contract.

Note that in optimization program (1), it is easy to verify that ẑ1 = 0 if ẑ0 < 1. If

ẑ0 = 1, in this case, at any time t, by the incentive constraint of the agent for any belief

µB
t , we must have r̂Bt,0 = 1 as well. Therefore, the agent receives the maximum budget of 1

whenever he receives a bad news signal. In this case, we can also decrease ẑ1 and rGt,1 for

all t ≥ 0 by ẑ1, which does not affect the agent’s incentive for effort and hence the optimal

contract satisfies that rBt = rNτR = (1, 0) for any t ≤ τR.

Next we will focus on the case when ẑ0 < 1 and hence ẑ1 = 0. Now consider another

contract R̄ with menu options {r̄st }t≤τR̂,s∈S\{N} and (z̄0, z̄1), where (z̄0, z̄1) = (1, 0) and for

any time t ≤ τR, r̄
G
t = r̂Gt and r̄Bt = (1, 0). We show that this weakly improves the agent’s

incentive to exert effort until time τR̂ for any t ≤ τR̂. Specifically, for any t ≤ τR̂, the
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increases in no information payoff is

ūNt − ûNt ≤ (1− µN
t )(1− r̂Bt,0).

This is because in contract R̄, either the agent prefers the menu option rGt′ for some t′ ≥ t,

in which case the reward difference is 0, or the agent prefers the menu option (1, 0), in

which case the reward difference is at most (1 − µN
t )(1− r̂Bt,0) since one feasible option for

the agent in contract R̂ is r̂Bt with expected reward at least (1−µN
t )r̂Bt,0. Moreover, for any

time t ≤ τR̂, the increases in continuation payoff for exerting effort from t+∆ until τR̂ is at

least (1 − µN
t )(1 − r̂Bt,0). This is because incentive constraints (IC) imply that r̂Bt, 0 must

decrease as t increases, which is due to the fact that in the perfect-learning environment, the

posterior belief µBt assigns a probability of 1 to the state being 0 at any time t. Therefore,

when the state is 0, the reward of the agent is deterministically 1 in contract R̄ and the

reward of the agent is at most r̂Bt,0 in contract R̂, implying that the difference in expected

reward is at least (1− µN
t )(1− r̂Bt,0). Combining the above observations, we have τR̄ ≥ τR̂,

and hence R̄ is also optimal.

B.3 Single-signal Environment

Proof of Lemma 5. For any contract R, let ut(µ) be the convex hull of the no information

payoff uNt′ for t′ ≤ t by viewing uNt′ as a function of µN
t′ . Consider an optimal contract R

with the following selection:

1. maximizes the time t̄ such that ut̄(µ
N
t ) = uNt for any time t ≤ t̄−∆;

2. conditional on maximizing t̄, selecting the one that maximizes the weighted average

no information payoff after time t̄, i.e.,
∑

i≥0 e
− i

∆ · rNt̄+i∆.

The existence of optimal contract given such selection rule can be shown using standard

arguments in the discrete time model since the set of optimal contracts that satisfy the first

criterion is compact and the objective in the second selection criterion is continuous. Let τR

be the stopping time of the agent for contract R. We will show that t̄ = τR.

Suppose by contradiction we have t̄ < τR. At any time t ≤ τR, recall that Gt is the

continuation game at time t with prior belief µN
t−∆ such that the agent’s utility for not

exerting effort is uNt−∆ and the agent’s utility for exerting effort in Gt is Ut. Note that

Ut ≥ uNt−∆ for any t ≤ τR for any t ≤ τR. We first show that the equality holds must hold

at time t̄+∆, i.e., Ut̄+∆ = uNt̄ .

Let ūt(µ) be the upper bound on the expected reward at any belief µ at time t given
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Figure 7: This figure illustrates the case when µG
t̄ ≤ µN

t∗ . The black curve is the
function ut̄(µ), blue line is the function ū(µ) and the red line is the function y(µ).

that no Poisson signal has arrived before t. Specifically,

ūt(µ) = max
z0,z1∈[0,1]

µz1 + (1− µ)z0 s.t. µN
t′ z1 + (1− µN

t′ )z0 ≤ uNt , ∀t′ ≤ t.

It is easy to verify that function ūt(µ) is convex in µ for all t and ūt(µ
N
t′ ) is an upper bound

on the no information utility uNt′ for all t′ > t. Moreover, for any µ ≤ µN
t , ūt(µ) is a linear

function in µ. The reward function ūt(µ) for t = t̄ and µ ≤ µN
t̄ is illustrated in Figure 7 as

the blue straight line.

Since the no information utility is not convex at time t = t̄, we have ūt̄−∆(µ
N
t̄ ) > uNt̄ .

In this case, if Ut̄+∆ > uNt̄ , by increasing uNt̄ to min{Ut̄+∆, ūt̄−∆(µ
N
t̄ )}, the incentive of the

agent for exerting effort is not violated. Moreover, selection rule (2) of maximizing the no

information utility after time t̄ is violated, a contradiction. Therefore, we can focus on the

situation where the agent’s incentive for exerting effort at time t̄+∆ is binding.

By the construction of R, there exists t ≤ t̄ such that ut̄(µ
N
t ) < uNt . Let t∗ be the

maximum time such that ut̄(µ
N
t∗) = uNt∗ . That is, µN

t∗ is the tangent point such that uNt

coincides with it convex hull. See Figure 7 for an illustration. We consider two cases

separately.

• µ∗
t̄ ≥ µG

t̄ . In this case, let y(µ) be a linear function of posterior µ such that y(µN
t̄ ) =

uNt̄ and y(µG
t̄ ) = u(µG

t̄ ). Function y is illustrated in Figure 7 as the red line. Note that

in this case, we have y(µN
t̄−∆) < ut̄(µ

N
t̄−∆) = uNt̄−∆. Moreover, y(µN

t̄−∆) is the optimal

continuation payoff of the agent for exerting effort at time t̄ given belief µN
t̄−∆. This

is because by exerting effort, either the agent receives a Poisson signal G at time t̄,

which leads to posterior belief µG
t̄ with expected payoff u(µG

t̄ ) = y(µG
t̄ ), or the agent

does not receive a Poisson signal, which leads to belief drift to µN
t̄ , with optimal
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Figure 8: The black solid curves are the agent’s expected utilities for not exerting
effort as a function of his belief at any time t. The left curve is the expected utility
for beliefs without receiving Poisson signals, and the right curve is the one receiving
the Poisson signal G.

continuation payoff being Ut̄ = uNt̄ = y(µN
t̄ ). However, y(µN

t̄−∆) < uNt̄−∆ implies that

the agent has a strict incentive to not exert effort at time t̄, a contradiction.

• µ∗
t̄ < µG

t . In this case, consider another contract R̄ such that the no information

utility in contract R̄ is uN
t;R̄

= u(µN
t ) for any t ≤ t̄. Note that in contract R̄, the

expected reward of the agent at any time t for receiving a Poisson signal is the same

as in contract R, while the expected reward for not receiving Poisson signals weakly

decreases. Therefore, contract R̄ is also an optimal contract. However, the time such

that the no information payoff is a convex function is strictly larger in R̄, contradicting

to our selection rule for R.

Therefore, we have t̄ = τR and the no information utility of the agent is a convex

function.

Proof of Theorem 3. By Lemma 5, there exists a contract R with a sequence of menu op-

tions {rst }s∈S,t≤τR∪{rNτR} in which the no information payoff is convex in the no information

belief. If µN
t < uNt for all t ≤ τR, let ẑ1 = 1 and let ẑ0 ≤ 1 be the maximum reward such

that µN
t + ẑ0(1 − µN

t ) ≤ uNt for all t ≤ τR. Otherwise, let ẑ0 = 0 and let ẑ1 ≤ 1 be the

maximum reward such that ẑ1 ·µN
t ≤ uNt for all t ≤ τR. Essentially, the straight line (ẑ0, ẑ1)

is tangent with the agent’s utility curve for not receiving informative signals. Let t̂ be the

time corresponds to the rightmost tangent point. See Figure 8 for an illustration.

Let u(µ) be the function that coincides with uNt for µ ≤ uN
t̂

and u(µ) = (ẑ1− ẑ0)µ+ ẑ0.

Note that u is convex. Consider another contract R̂ that is implemented by scoring rule

P (µ, θ) = u(µ) + ξ(µ)(θ − µ) for all µ ∈ [0, 1] and θ ∈ {0, 1} where ξ(µ) is a subgradient

46



µG
t̂

µN
t̂ 10

ẑ1
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Figure 9: The blue line is the expected utility of the agent for choosing the menu
option (rGt,0, r

G
t,1) if the utility at belief µG

t̂
is higher than the red line.

of u. It is easy to verify that the implemented scoring rule satisfies the budget constraint.

Next we show that τR̂ ≥ τR and hence contract R̂ must also be optimal, which concludes

the proof of Theorem 3.

In any continuation game Gt, recall that u
N
t−∆ is the utility of the agent for not exerting

effort and Ut is the utility of the agent for exerting effort given contract R. For any time

t ≤ τR, the agent has incentive to exert effort at time t given contract R implies that

uNt−∆ ≤ Ut. Given contract R̂, we similarly define ûNt−∆ and Ût and show that for any time

t ≤ τR, Ut − Ût ≤ uNt−∆ − ûNt−∆. This immediately implies that the agent also has incentive

to exert effort at any time t ≤ τR given contract R̂ and hence τR̂ ≥ τR.

Our analysis for showing that Ut − Ût ≤ uNt−∆ − ûNt−∆ is divided into two cases.

Case 1: t ≥ t̂. In this case, since uNt−∆ ≥ ûNt−∆ for any t ≤ τR by the construction of

contract R̂, it is sufficient to show that Ût ≥ Ut for any t ∈ [t̂, τR]. We first

show that for any t ∈ [t̂, τR], if µ
G
t ≤ µN

t , we must have u(µG
t ) ≥ uGt in order to

satisfy the dynamic incentive constraint in contract R. Next we focus on the case

where µG
t > µN

t and show that ûGt = µG
t ẑ1 + (1 − µG

t )ẑ0 ≥ uGt . We prove this by

contradiction. Suppose that uGt > µG
t ẑ1 + (1 − µG

t )ẑ0. Recall that (rGt,0, r
G
t,1) are

the options offered to the agent at time t that attains expected utility uGt under

belief µG
t . Moreover, in our construction, either ẑ0 = 0, or ẑ1 = 1, or both equality

holds. Therefore, the bounded constraints rGt,0, r
G
t,1 ∈ [0, 1] and the fact that agent

with belief µG
t prefers (rGt,0, r

G
t,1) over (ẑ0, ẑ1) imply that

rGt,0 ≥ ẑ0 and rGt,1 ≥ ẑ1.

See Figure 9 for an illustration. Since µN
t̂

< µG
t , this implies that the agent’s utility
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at belief µN
t̂

given option (rGt,0, r
G
t,1) is strictly larger than his utility under (ẑ0, ẑ1),

i.e.,

µN
t̂
rGt,1 + (1− µN

t̂
)rGt,0 > µN

t̂
ẑ1 + (1− µN

t̂
)ẑ0 = uN

t̂
.

However, option (rGt,0, r
G
t,1) is a feasible choice for the agent at time t̂ in dynamic

scoring rule S since t ≥ t̂, which implies that µN
t̂
rGt,1 + (1 − µN

t̂
)rGt,0 ≤ uN

t̂
. This

leads to a contradiction.

Finally, for t ∈ [t̂, τR], conditional on the event that the informative signal did not

arrive at any time before t, since the agent expected utility given contract R̂ is

weakly higher compared to contract R given any arrival time of the Poisson signal,

taking the expectation we have Ût ≥ Ut.

Case 2: t < t̂. In this case, the continuation value for both stopping effort immediately

and exerting effort until time τR weakly decreases. However, we will show that the

expected decrease for stopping effort is weakly higher. For any t < t̂, let r̂t be the

reward such that uNt = µN
t r̂t+(1−µN

t )ẑ0. Note that r̂t ≥ ẑ1 and it is possible that

r̂t ≥ 1. The construction of quantity r̂t is only used in the intermediate analysis,

not in the constructed scoring rules. Let ũt(µ) ≜ µr̂t + (1 − µ)ẑ1 be the expected

utility of the agent for choosing option (ẑ0, r̂t) given belief µ. This is illustrated in

Figure 10.

By construction, the expected utility decrease for not exerting effort in Gt is

uNt − ûNt = ũt(µ
N
t )− ûNt = µN

t (r̂t − ẑ1).

Next observe that for any time t′ ∈ [t, τR], u
G
t′ ≤ ũt(µ

G
t′ ). This argument is identical

to the proof in Case 1, and hence omitted here. Therefore, the expected utility

decrease for exerting effort until τR is

Ut − Ût =

∫ τR

t+∆

(
uGt′ − ûGt′

)
dFt(t

′) ≤
∫ τR

t+∆

(
ũt(µ

G
t′ )− ûGt′

)
dFt(t

′)

= (r̂t − ẑ1) ·
∫ τR

t+∆
µG
t′ dFt(t

′) ≤ (r̂t − ẑ1) · µN
t ≤ (r̂t−∆ − ẑ1) · µN

t−∆

where the second inequality holds by Bayesian plausibility and the last inequal-

ity holds since the no information belief drifts towards state 0. Combining the

inequalities, we have Ut − Ût ≤ uNt−∆ − ûNt−∆.

Combining the above two cases, we have Ut − Ût ≤ uNt−∆ − ûNt−∆ for any t ≤ τR. Since

48



µG
t̂

µN
t̂ 10

ẑ1
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Figure 10: The blue line is the utility function ũt, which serves as an upper bound
on the utility uG

t′ for any t′ ≥ t.

the agent’s optimal effort strategy is to stop at time τR given contract R, this implies that

at any time t ≤ τR, if the agent has not received any informative signal by time t, the agent

also has incentive to exert effort until time τR given contract R̂ that can be implemented

as a scoring rule.

C General Environments

C.1 Optimality of Dynamic Contracts

Proof of Lemma 6. If T ≤ Tλ,D,c, the lemma holds trivially. Next we focus on the case

T > Tλ,D,c.

Suppose there exists a contract R such that τR > Tλ,D,c. The prior belief in the con-

tinuation game GτR is µN
τR−∆ < µλ,c ≤ 1

2 . By the definition of τR, the agent’s optimal

strategy is to exert effort for one period given contract R. This implies that the agent has

incentive to exert effort in continuation game GτR given the optimal scoring rule for GτR . By

Proposition 1, the optimal scoring rule for GτR is the V-shaped scoring rule P with kink at

µN
τR−∆. By simple algebraic calculation, the expected utility increase given scoring rule P

for exerting effort in GτR is µN
τR−∆(λ

G
1 −λG

0 )∆, which must be at least the cost of effort c∆.

However, this violates the assumption that µN
τR−∆ < µλ,c, a contradiction.

Proof of Lemma 7. For any time t ≥ 0, given any information arrival probabilities λ such
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that λG
1 + λB

1 ≤ λG
0 + λB

0 + ϵ, we have

µN
t−∆ − µN

t = µN
t−∆ −

µN
t−∆(1− λG

1 ∆− λB
1 ∆)

µN
t−∆(1− λG

1 ∆− λB
1 ∆) + (1− µN

t−∆)(1− λG
0 ∆− λB

0 ∆)

≤ µN
t−∆

(
1− (1− λG

1 ∆− λB
1 ∆)

(1− λG
1 ∆− λB

1 ∆) + (1− µN
t−∆)ϵ∆

)
≤ 2µN

t−∆(1− µN
t−∆)ϵ∆ ≤ 1

2
ϵ∆. (2)

the second inequality holds since λG
1 ∆ + λB

1 ∆ ≤ 1
2 and the last inequality holds since

µN
t−∆(1− µN

t−∆) ≤
1
4 . For any η > 0, there exists ϵ0 such that

For any η > 0, let ϵ = 2ηκ0

D > 0. Given the myopic-incentive contract R, the agent’s

utility increase for exerting effort in one period at time t is

µN
t λG

1 ∆+ (1− µN
t )(1− λB

0 ∆) · µN
t

1− µN
t

− µN
t−∆ = µN

t (λG
1 − λB

0 )∆ + (µN
t − µN

t−∆).

If µN
t ≥ µN

Tλ,D,c
+ η, we have µN

t ≥ µλ,c + η and hence the expected utility increase is at

least

µλ,c(λ
G
1 − λB

0 )∆ + η(λG
1 − λB

0 )∆ + (µN
t − µN

t−∆) ≥ µλ,c(λ
G
1 − λB

0 )∆

where the inequality holds by the definition of ϵ and the sufficient incentive condition. Note

that this is at least the cost of effort c∆ by the definition of µλ,c, and hence the agent has

incentive to exert effort at time t. Therefore, the stopping time given the myopic-incentive

contract satisfies µN
τR

≤ µN
Tλ,D,c

+ η.

To prove Theorem 4, we also utilize the following lemma to bound the difference in

expected scores when the posterior beliefs differ by a small constant of ϵ given any bounded

scoring rule.

Lemma 9. For any bounded static scoring rule P with expected reward function UP (µ)

given posterior belief µ, we have

|UP (µ+ ϵ)− UP (µ)| ≤ ϵ, ∀ϵ > 0, µ ∈ [0, 1− ϵ].

Proof. For any static scoring rule P , the subgradient of UP evaluated at belief µ equals its

difference in rewards between realized states 0 and 1, which is bounded between [−1, 1] since

the scoring rule is bounded within [0, 1]. This further implies that |UP (µ+ ϵ)− UP (µ)| ≤ ϵ

for any ϵ > 0 and µ ∈ [0, 1− ϵ].
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Figure 11: The black curve is the expected score function UP . The red lines are linear
functions U and U respectively.

Proof of Theorem 4. By Lemma 7, it is sufficient to show that there exists η > 0 and ϵ > 0

such that when the slow-drift condition is satisfied for constant ϵ, for any contract R that

can be implemented as a scoring rule, we have µN
τR

− µN
Tλ,D,c

> η.

Suppose by contradiction there exists a contract R that can be implemented as a scoring

rule and µN
τR

− µN
Tλ,D,c

≤ η. Let P be the scoring rule that implements contract R and let

UP (µ) = Eθ∼µ[P (µ), θ] be the expected score of the agent. Let U(µ) be a linear function

such that U(µB
τR
) = UP (µ

B
τR
) and U(µN

τR
) = UP (µ

N
τR
). Let U(µ) be a linear function such

that U(µG
τR
) = UP (µ

G
τR
) and U(µN

τR
) = UP (µ

N
τR
). See Figure 11 for an illustration. Let

fs
t ≜ µN

t λG
1 ∆ + (1 − µN

t )λG
0 . At time τR, the agent has incentive to exert effort, which

implies that the cost of effort c∆ is at most the utility increase for exerting effort

fG
τR−∆∆ · UP (µ

G
τR
) + fB

τR−∆∆ · UP (µ
B
τR
) + (1− fG

τR−∆∆− fB
τR−∆∆) · UP (µ

N
τR
)− UP (µ

N
τR−∆)

= fG
τR−∆∆ · (UP (µ

G
τR
)− U(µG

τR
)) + U(µG

τR−∆)− UP (µ
N
τR−∆) ≤ fG

τR−∆∆ · (UP (µ
G
τR
)− U(µG

τR
))

where the equality holds by linearity of expectation and the inequality holds by the convexity

of utility function UP . Therefore, we have

UP (µ
G
τR
)− U(µG

τR
) ≥ c

fG
τR−∆

=
c

µN
τR−∆λ

G
1 + (1− µN

τR−∆)λ
G
0

=

(λG
1 − λG

0 )(1−
η

µN
τR−∆

)

λG
1 + 1

µN
τR−∆

(1− µN
τR−∆)λ

G
0

≥ (λG
1 − λG

0 )

λG
1 + 1

µN
τR−∆

(1− µN
τR−∆)λ

G
0

− 2η

κ1

where the second inequality holds since µN
τR

≤ µN
Tλ,D,c

+ η ≤ µλ,c+ η, and the last inequality

holds since λB
0 ≥ κ1.

For any constant γ > 0, let time t be the time such that µN
t−∆ − µN

τR−∆ > γ. First note
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that the convexity of UP and the budget constraint at state 1 implies that

U(µN
t−∆)− UP (µ

N
t−∆) ≤

2η

κ1
·
1− µN

τR

1− µG
τR

·
µG
τR

− µN
t−∆

µG
τR

− µN
τR

≤ 2η(κ1 + κ̄1)

κ21

where the last inequality holds since (1−µN
τR
) · µ

G
τR

−µN
t−∆

µG
τR

−µN
τR

≤ 1 and 1
1−µG

τR

≤ κ1+κ̄1

κ1
. Moreover,

UP (µ
G
t )− U(µG

t ) ≤
2η

κ1
·

1− µN
τR

µG
τR

− µN
τR

≤ 2η

κ1
· λG

1

µN
τR
(λG

1 − λG
0 )

≤ 2ηκ̄1
κ1c

.

Therefore, the utility increase for exerting effort in one period at time t is

fG
t−∆∆ · UP (µ

G
t ) + fB

t−∆∆ · UP (µ
B
t ) + (1− fG

t−∆∆− fB
t−∆∆) · UP (µ

N
t )− UP (µ

N
t−∆)

≤
(
fG
t−∆ · U(µG

t ) + fB
t−∆ · U(µB

t )− (fG
t−∆ + fB

t−∆) · U(µN
t ) + ϵ+

2ηκ̄1
κ1c

+
2η(κ1 + κ̄1)

κ21

)
∆

≤
(
µN
τR
(λB

0 − λB
1 )− γκ1 + ϵ+

2ηκ̄1
κ1c

+
2η(κ1 + κ̄1)

κ21

)
∆.

Since c = µλ,c(λ
G
1 − λG

0 ) ≥ (µN
τR

− η)(λB
0 − λB

1 ), the agent suffer from a loss at least(
γκ1 − ηκ̄1 − ϵ− 2ηκ̄1

κ1c
− 2η(κ1 + κ̄1)

κ21

)
∆

for exerting effort in one period.

Now consider the utility increase for exerting effort from belief µN
t to µN

τR
. Note that

for any δ > 0, with probability at least

1− (1− fG
t−∆∆− fB

t−∆∆)
δ
ϵ∆ ≤ 1− exp

(
−δ

ϵ
(fG

t−∆ + fB
t−∆)

)
,

the agent receives a Poisson signal and stops before the no information belief drifts for a δ

distance. Moreover, the loss is at least(
γκ1 − 2δ − ηκ̄1 − ϵ− 2ηκ̄1

κ1c
− 2η(κ1 + κ̄1)

κ21

)
∆

in each period before the no information belief drifts a δ distance. In contrast, the benefit

from exerting effort after the no information belief drifts a δ distance is at most 1, but it only

occurs with probability at most exp
(
− δ

ϵ (f
G
t−∆ + fB

t−∆)
)
. Therefore, the agent’s utility for

exerting effort is smaller than not exerting effort in continuation game Gt when parameters

δ, η, ϵ are chosen to be sufficiently small compared to γ. This leads to a contradiction since
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the agent at time t will not choose to exert effort given scoring rule P .

C.2 Optimal Dynamic Contracts

Proof of Theorem 5. By Lemma 2, the optimal contract can be represented as offering a

sequence of menu options {rst }t≤τR,s∈S ∪ {rNτR} that satisfies the incentive constraints.

Recall that rNt is the menu option chosen by agent with belief µN
t given set of available

menu options Rt at time t. For any time t ≤ τR, let

r̂Nt = argmax
(r0,r1)∈[0,1]2

r0

s.t. µN
t r1 + (1− µN

t )r0 = µN
t rN1 + (1− µN

t )rN0 .

That is, the agent with belief µN
t has the same expected reward given both menu options

rNt and r̂Nt , and r̂Nt maximizes the reward for state 0. Note that r̂Nt is also the menu option

that maximizes the agent’s utility with belief µB
t without violating the incentive constraints.

Therefore, it is without loss of optimality to consider contracts where r̂Bt = r̂Nt for all t ≤ τR.

Moreover, by the incentive constraints over time, the menu options r̂Bt = r̂Nt are decreas-

ing over time, and the decrease happens first for state 1 since r̂Nt maximizes the rewards for

state 0, which implies that conditions (1) in Theorem 5 holds. Finally, the menu option for

belief µG
t can be computed by maximizing the agent’s utility without violating the incentive

constraints from previous time, i.e.,

rGt = argmax
r:Θ→[0,1]

u(µG
t , r)

s.t. u(µN
t′ , r

N
t′ ) ≥ u(µN

t′ , r), ∀t′ ∈ [0, t].

This is because such menu option maximizes the agent’s continuation utility for exerting

effort at any time t ≤ τR without affecting the agent’s utility for stopping immediately.

Therefore, condition (2) in Theorem 5 is satisfied as well.

D Extensions

D.1 Ex Ante Budget Constraints

Proposition 3. In environments where both perfect-learning and single-signal conditions

are satisfied, and the principal’s budget constraint is imposed in ex ante, there exists an

optimal contract that can be implemented as a V-shaped scoring rule.
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Proof. Note that even with ex ante budget constraints, the menu representation of the opti-

mal contracts still applies. Since only good news signal G arrives with positive probability,

it is sufficient to consider optimal contract R with menu representation {rGt }t≤τR ∪ {rNτR}.
First note that it is without loss to assume that rNτR,1 = 0 and rGt,0 = 0 for all t ≤ τR. The

latter holds because signals are perfectly revealing and hence lowering the reward for state 0

upon receiving good news signals does not affect the agent’s incentive or the ex ante budget

constraint of the principal. The reason why rNτR,1 = 0 is because we can always increase

the reward rNτR,0 and decrease the reward rNτR,1 such that the agent’s expected reward given

belief µN
τR

remains unchanged, and the dynamic incentives of the agent is not affected under

single-signal environments. In this case, the dynamic incentives of the contract implies that

rGt,1 is weakly decreasing over time.

Now consider another contract R̂ that only offers menu options rNτR and r̂ = (0, r̂1) at all

time t with parameter r̂1 ≤ rGτR,1 chosen such that the agent’s incentive for exerting effort is

binding at time τR. Note that contract R̂ can be implemented as a V-shaped scoring rule.

We will show that τR̂ = τR and the expected reward of the agent given contract R̂ is lower,

which implies that contract R̂ is also optimal under the ex ante budget constraint.

Let t̂ be the maximum time such that µN
t̂−∆

weakly prefers menu option r̂ over rNτR .

Note that given contract R̂, by the Envelope Theorem, the agent’s utility for exerting effort

optimally is convex in his current belief with derivative larger than −rNτR,0. Therefore, for

any time t ∈ (t̂, τR], the agent always has incentive to exert effort given contract R̂. For any

time t ≤ t̂, using the identical argument in the proof of Theorem 2 for the perfect-learning

environments, by decreasing the rewards in menu options rGt , the agent’s decrease in utility

for exerting effort in continuation game Gt is less than his decrease in utility for not exerting

effort. Therefore, the agent also has incentive to exert effort at any time t ≤ t̂ in the dynamic

model given contract R̂. This implies that τR̂ ≥ τR. Since the menu option r̂ is chosen such

that the agent’s incentive for exerting effort is binding at time τR, the agent does not have

incentive to exert effort at time τR +∆ and hence τR̂ = τR. Finally, since r̂1 ≤ rGt,1 for any

t ≤ τR, the agent’s expected reward for receiving good news signals at any time t is weakly

lower, and hence the ex ante budget constraint is satisfied given contract R̂.
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