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Abstract

We propose a simple class of pricing-based mechanisms for agents with non-linear utilities,

such as risk aversion and budget constraints. We show that these mechanisms are max-min ro-

bustly optimal when the principal cannot observe the detailed non-linear utility functions and

type distributions. Furthermore, we provide a general framework that extends the approxima-

tion guarantees of pricing-based mechanisms from linear to non-linear utilities in Bayesian

environments. This extension allows us to show that many economic conclusions from auction

theory based on linear utility models (e.g., Bulow and Roberts, 1989) approximately extend to

non-linear utility models.
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1 Introduction

Many classical papers on mechanism design, and in particular auction theory, focus on agents with
linear utilities, i.e., the agents’ utilities are linear functions of both their values for the goods, and
their payments to the principal. The simplifying assumption of linear utilities allows the derivation
of simple closed-form characterizations and nice economic interpretations of optimal mechanisms
(e.g., Myerson, 1981; Bulow and Roberts, 1989). However, agents in practice deviate significantly
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from linear utilities, for example, through private budget constraints or risk aversion over proba-
bilistic outcomes. Notably, optimal mechanisms for agents with non-linear utilities are in general
not simple and therefore difficult to understand precisely. For example, the optimal mechanism
for a single-item single-agent environment with a private budget constraint admits no closed-form
characterization (Che and Gale, 2000).1

The dramatic differences for designing optimal mechanisms for agents with non-linear utilities
raise the concern about the robustness of the economic conclusions we observed when assuming
linear utilities. In this paper, by analyzing the performances of simple mechanisms, we identify
conditions under which the economic conclusions derived from linear utility models approximately
extend to general (i.e., non-linear) utility models.

Our definition of simple mechanisms are motivated by Bulow and Roberts (1989) who, as later
interpreted by Alaei et al. (2013), show that for linear agents,2 every mechanism can be interpreted
as a pricing-based mechanism, i.e., mechanism where the menu offered to each agent is equiva-
lent to a distribution over posted prices. As illustrated by Bulow and Roberts (1989), for agents
with linear utilitiess, there is a unique mapping from values to quantiles based on the cumulative
distribution function. Pricing-based mechanisms can thus be implemented in quantile space by
specifying allocations and payments for these quantiles. Furthermore, an agent’s quantile can be
interpreted as the expected quantity sold when a price equal to the corresponding value is posted.
Using this interpretation, Bulow and Roberts (1989) construct revenue curves that map quantities
sold (quantiles) to expected revenue and define the marginal revenue for serving quantile q as the
derivative of the revenue curve evaluated at quantile q. They show that, for linear utility agents,
the multi-agent revenue-optimal mechanism can be implemented as marginal revenue maximiza-

tion, which always allocates the item to the agent with the quantile corresponding to the highest
marginal revenue.

Pricing-based mechanisms for linear agents can be generalized to non-linear agents by consid-
ering per-unit prices, i.e., each agent who is given a per-unit price p can purchase any lottery with
winning probability q ∈ [0, 1] and pay a deterministic price of p · q. The implementation of this
generalization is straightforward in single-agent settings.

However, when there are multiple non-linear agents, implementing the pricing-based mecha-
nisms in quantile space analogous to linear agents is non-trivial since even the definition of quan-
tiles for non-linear agents is not clear. This is because the type space of a non-linear agent can be
multi-dimensional. For instance, for a risk averse agent, her private type could include both her
value for the item and her risk attitude, and there does not exist a consistent ranking of types that

1Che and Gale (2000) provide a characterization showing that the optimal mechanism must be the solution of a dif-
ferential equation. However, solving the differential equation given arbitrary type distribution is generally intractable.

2In this paper, we write “agents with linear utilities” as “linear agents” for short, and “agents with non-linear
utilities” as “non-linear agents”.
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captures her demand for all possible menus. In our paper, we provide a natural definition that ran-
domly maps the potentially multi-dimensional type of a non-linear agent to a single-dimensional
quantile based on her demand function given per-unit prices. Such definition allows us to provide a
construction that converts any pricing-based mechanism for linear agent to a pricing-based mecha-
nism for non-linear agents with the same payoff guarantee for the designer (Theorem 1). Moreover,
we extend the analysis from (Bulow and Roberts, 1989) to show that the marginal revenue max-
imization mechanism maximizes the expected revenue across all pricing-based mechanisms for
non-linear agents.

In many practical applications involving non-linear agents, the principal often has limited
knowledge regarding the preferences of the agents such as the agents’ exact utility functions or type
distributions. For instance, when agents are risk-averse, it is challenging for the principal to exactly
know the risk attitudes of all agents. A paradigm for understanding the design of good mechanisms
in those practical applications is the robustness framework (e.g., Carroll, 2015, 2017; Brooks and
Du, 2021). We show that when the principal only knows the expected demand curve (for instance,
based on the estimation of the expected demands of the agents using historical purchase data), the
marginal revenue maximization mechanism is robustly optimal for non-linear agents. That is, the
marginal revenue maximization mechanism maximizes the minimum expected revenue where the
minimum is taken over all possible utility functions and type distributions that are consistent with
the expected demands (Theorem 2). This robustness result suggests that when the details of non-
linear utilities are unknown, the principal should refrain from customizing lotteries in pursuit of
higher revenue. Instead, treating agents akin to those with linear utilities and applying the optimal
pricing-based mechanism – marginal revenue maximization – is advisable.

Nonetheless, there exist applications where the principal can have more refined prior informa-
tion. For those applications, not all mechanisms can be interpreted as pricing-based mechanisms
and, in fact, pricing-based mechanisms are generally not optimal even in single-agent settings for
non-linear agents (e.g., agents with budget constraints). To understand the additional benefit the
principal can possibly obtain by figuring out the details of the environments and adopting sophis-
ticated mechanisms targeting those details, we apply the method of approximations to quantify the
maximum revenue loss of pricing-based mechanisms for non-linear agents.

The approximation guarantees of simple mechanisms have been widely studied for linear
agents. Those approximation results allow qualitative conclusions about drivers of good economic
outcomes. Consider the examples of selling m units of identical items to multiple heterogeneous
buyers. Example 1: Bulow and Roberts (1989) connects auction theory with classical microeco-
nomics by showing that the revenue optimal mechanism can be interpreted as the marginal revenue
maximization mechanism. Example 2: Yan (2011) shows that sequential posted pricing guarantees
at least 1− 1√

2πm
of the optimal auction revenue, which indicates that simultaneity and competition
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are not salient features for revenue maximization, especially in large markets where the number
of units m is sufficiently large. Example 3: Jin et al. (2021) show that the multiplicative loss of
posting an anonymous price can be as large as logm even when the agents’ valuation distributions
are regular. This implies that agents’ identities and the seller’s ability to third-degree price discrim-
inate among the agents are crucial for revenue maximization, especially in large markets. See the
survey of Hartline (2012) for detailed discussion of the method of approximation in economics.

We introduce a reduction framework that approximately extends the approximation guarantees
of pricing-based mechanisms from linear agents to non-linear agents, and show that those mech-
anisms are approximately optimal for large families of non-linear agents. Specifically, given a
pricing-based mechanism that guarantees a β-approximation (i.e., achieves at least 1/β fraction to
the ex ante relaxation3) for linear agents and given non-linear agents that are ζ-resemblant4 of linear
agents, our reduction framework shows that the analogous pricing-based mechanism for non-linear
agents guarantees a βζ-approximation to the optimal (Theorem 3).5 This reduction framework is
general – it can be applied to any downward-closed feasibility constraint (e.g., single-item, multi-
unit, matroid), many common objectives (e.g., revenue, welfare, or their convex combination).

Our reduction framework for non-linear agents allows us to observe not only that the main
drivers of good mechanisms are similar for non-linear agents, but also that non-linear utility itself,
in many of its forms, is not a main concern that necessitates specialized mechanism designs. As
an illustration, agents with public budgets and regular valuation distributions are 1-resemblant of
linear agents for revenue maximization, which implies, e.g., for m-unit environments of Exam-
ple 2, that sequential posted pricing guarantees at least 1 − 1√

2πm
of the optimal revenue for such

non-linear agents, and simultaneous implementation and competition among agents are not salient
features for revenue maximization. Such conclusions are unlikely to be derived through the clas-
sical approach of analyzing the optimal mechanisms since the optimal mechanisms for non-linear
agents often depend on the details of the utility structures, and are too complex to admit simple
interpretations.

1.1 Discussion of Results on ζ-Resemblance

To establish the approximations of pricing-based mechanisms for non-linear agents, we charac-
terize broad families of non-linear agents that are ζ-resemblant for small constant factors ζ (e.g.,

3This is an upper bound of the optimal, which will be formally defined in Section 5.
4We measure the resemblance of agents in terms of the (topological) closeness of the single-agent revenue curves,

as defined in Bulow and Roberts (1989). We provide the details in the next subsection.
5Technically, our main results require that the agents utilities satisfy the von Neumann-Morgenstern expected

utility representation (Morgenstern and von Neumann, 1953). However, the reduction framework for pricing-based
mechanisms, such as sequential posted pricing, can also extend to agents that do not satisfy the expected utility
representation (e.g., agents with endogenous valuation, Gershkov et al., 2021; Akbarpour et al., 2023). See Section 6
for a detailed discussion of non-expected utilities and other extensions.
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agents with independent private budgets, or agents with risk aversion) and families that are not
(e.g., agents whose budgets and values are correlated). For non-linear agents that are ζ-resemblant,
pricing-based mechanisms are approximately optimal if those mechanisms are approximately op-
timal for linear agents; thus, non-linearity of utility can be viewed as a detail that can be omitted
from the model without significantly altering the main take-aways. On the other hand, with utility
models that are not ζ-resemblant for modest ζ , non-linearity is a crucial feature that needs specific
study for identifying forms of mechanisms lead to good economic outcomes.

The ζ-resemblance property that governs our reduction is based on a single-agent price-posting
approximation with ex ante supply constraints (cf. Bulow and Roberts, 1989). In particular, we say
a non-linear agent is ζ-resemblant if given any ex ante supply constraint q ∈ [0, 1], the optimal
payoff of the principal is at most ζ times the expected payoff when restricting the mechanisms to
posting (randomized) per-unit prices. For linear agents, ζ = 1, i.e., the optimal mechanisms under
any ex ante supply constraint can be implemented as posting per-unit prices. For non-linear agents,
a smaller parameter ζ results in a better approximation of posted pricing in single-agent problems,
making non-linear agents more resemblant of linear agents.

In our paper, we focus on the designer’s objective of revenue maximization and show that for
canonical non-linear utility models, parameter ζ is bounded by small constants. We also discuss
the extension for welfare maximization and their convex combinations in Section 6.1.

Risk Averse Utility. It is standard to model risk averse utility as a concave function that maps
the agents’ wealth to utility. For revenue maximization problems, risk aversion introduces a non-
linearity into the incentive constraints of the agents, which in most cases makes mechanism design
analytically intractable. We show that when the valuation distribution satisfies the monotone haz-
ard rate property, without any assumption on the risk preference such as constant absolute risk
aversion, a risk-averse agent is e-resemblant. Combined with our reduction framework, this im-
plies that the additional multiplicative loss in approximation ratios for pricing-based mechanisms
is at most e when agents are risk averse. Note that our bound is worst-case, and as illustrated in
Section 5.5, for common valuation distributions such as uniform distribution, the revenue losses
of both marginal revenue maximization and sequential posted pricing are almost negligible when
both the number of agents and number of items for sale are large.

Budgeted Utility. We consider a setting where agents have hard budget constraints for paying the
principal. That is, each agent’s utility is linear in payments if her payment is at most her budget,
and is minus infinity if her payment exceeds the budget. We show that if the budgets are inde-
pendent from the values, for regular valuation distributions,6 a public budget agent is 1-resemblant
and a private budget agent is 3-resemblant. This implies that simple mechanisms such as sequen-

6A valuation distribution is regular if the virtual value v − 1−F (v)
f(v) is weakly increasing in v.
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tial posted pricing are approximately optimal for agents with independent budget distributions. In
contrast, when the values are correlated with budgets, the principal can second-degree price dis-
criminate against the agents using their budget constraints, thereby achieving almost full surplus
extraction in some cases. In those cases, posted pricing mechanisms are not approximately optimal
even in single-agent settings and such budgeted agents are not constant resemblant to linear agents.

1.2 Related Work

Mechanism design for non-linear agents is widely studied in the literature. Most relevantly, Baisa
(2017) considers mechanism design without linear utilities and proposes a novel random allocation
mechanism based on the reported demand curves. However, the mechanism implemented in Baisa
(2017) offers a uniform price to all agents, which may be far from optimal as it does not price
discriminate the agents based on their prior heterogeneity (cf. Jin et al., 2021). Kazumura et al.
(2020) characterize the set of dominant strategy incentive compatible mechanisms in environments
without linear utilities and provide a general procedure for optimizing over this class. However,
depending on the utility models, obtaining a closed-form characterization using their procedure
remains challenging. The main contribution of our paper is to propose a simple class of dominant
strategy incentive compatible mechanisms, i.e., pricing-based mechanisms. We show that these
mechanisms are robustly optimal when the detailed utility models are unknown and approximately
optimal even compared to Bayesian incentive compatible mechanisms when the detailed utility
models are known.7

The robust optimality of simple mechanisms in complex environments has also been estab-
lished in Carroll (2015, 2017); Brooks and Du (2021); Hartline et al. (2020); Guo and Shmaya
(2023); etc. The main intuition in that line of work is that simple mechanisms are robustly optimal
when the principal is ambiguity averse and is not fully aware of the environment. Our robustness
result shows that, for auctions with non-linear utilities, the simple mechanism of marginal rev-
enue maximization is robustly optimal. In addition, our approximation results complement that
line of work by showing that the principal may still wish to adopt simple mechanisms in practice
since their performances are close to optimal. See Hartline and Lucier (2015) for a more detailed
discussion on the benefits of adopting simple approximation mechanisms.

Frameworks for reducing approximation for non-linear agents to approximation for linear
agents has also been studied in Alaei et al. (2013). Their framework converts marginal revenue
mechanisms for linear agents into mechanisms for non-linear agents. Unlike our approach, which
uses single-agent price-posting mechanisms as a building block, their framework involves single-

7Kushnir and Liu (2019) establish the equivalence between dominant strategy incentive compatible and Bayesian
incentive compatible mechanisms under the assumptions of increasing differences over distributions and a convex-
valued property. These assumptions are not made in our paper.
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agent ex ante optimal mechanisms, which in general are hard to characterize (e.g., for risk-averse
utilities). Due to this difference, the framework and its implementation in Alaei et al. (2013) are
more complex, and the resulting mechanisms under their framework are not dominant strategy
incentive compatible in general for non-linear agents.

In this work, as applications of our general framework, we focus on two non-linear models,
agents with risk-averse attitudes and agents with budget constraints.

Most results for agents with risk-averse utilities consider the comparative performance of the
first- and second-price auctions (cf. Holt Jr, 1980; Che and Gale, 2006). Matthews (1983) and
Maskin and Riley (1984), however, characterize the optimal mechanisms for symmetric agents for
constant absolute risk aversion and more general risk-averse models.

For symmetric agents with public budgets in single-item environments, Laffont and Robert
(1996) and Maskin (2000) respectively study the revenue-maximization and welfare-maximization
problems. Their results are generalized to i.i.d. values but asymmetric public budgets in Boulatov
and Severinov (2021) and to symmetric agents with uniformly distributed private budgets in Pai
and Vohra (2014). Che and Gale (2000) consider the single agent problem with private budget and
valuation distribution that satisfies declining marginal revenues, and characterize the optimal mech-
anism by a differential equation. In environments without unit-demand constraints, a price-posting
mechanism is optimal for selling a divisible good to a continuum of agents with private budgets
if their valuations are regular with decreasing density (Richter, 2019) and is a 2-approximation in
general (Abrams, 2006). For more general settings, no closed-form characterizations are known,
and algorithmic solutions are provided in Alaei et al. (2012); Devanur and Weinberg (2017).

It is well known that simple mechanisms are approximately optimal for linear agents. For
single item auction with linear agents, Alaei et al. (2019) show that the ratio between the optimal
mechanism and anonymous pricing is at most e under the regularity assumption, and later the ratio
is improved to 2.62 by Jin et al. (2019). Chawla et al. (2010) show that the approximation ratio
for order oblivious posted pricing is 2, and Yan (2011) shows that the approximation ratio for
sequential posted pricing is e/(e− 1).

For non-linear agents, given matroid environments, Chawla et al. (2011) show that a simple lot-
tery mechanism is a constant approximation to the optimal ex post individually rational mechanism
for agents with monotone-hazard-rate valuations and private budgets. In contrast, our approxima-
tion results are with respect to the optimal mechanism under interim individually rationality which
can be arbitrarily larger than the benchmark from Chawla et al. (2011).

The single-agent analysis for quantifying ζ-resemblance for non-linear agents is non-trivial in
general. For risk-averse agents, our analysis builds on the welfare-revenue gap for linear agents
developed in Hartline and Roughgarden (2009). For private-budget agents, our analysis builds on
the type decomposition trick developed in Abrams (2006) and the single-sample approximation
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technique developed in Dhangwatnotai et al. (2015). The details of our technical innovations will
be discussed in Appendix A.

2 Model

We consider the problem of selling m units of indivisible and identical items to n non-linear agents
where each agent has unit demand for the items. In this paper, since all agents have unit demand,
it is without loss to consider allocations to each agent as a lottery over {0, 1}.

Agent’s Utility Models. There is a set of agents N where |N | = n. An agent’s utility model is
defined as (T , F̄, u) where T , F̄ , and u are the type space, type distribution and utility function.
The outcome for an agent is the distribution over the pair (x, p), where allocation x ∈ {0, 1} and
payment p ∈ R+. The utility function u of the player is a mapping from her private type and the
realized outcome to her von Neumann-Morgenstern expected utility for the outcome. Throughout
this paper, we use the subscript i to denote agent i in multi-agent settings, and we will drop the
subscripts without ambiguity when we discuss single-agent problems.

There are several specific utility models we are interested in this paper.

• Linear utility: The agent’s private type is her value v of the good. Given allocation x and
payment p, her utility is

u(v, x, p) = v · x− p.

• Non-linear utility: For a non-linear agent with type t, her utility for allocation x and pay-
ment p is u(t, x, p). In our general reduction framework for non-linear utilities, we do not
impose any specific structural properties on the utility function u. However, there are several
important special cases of non-linear utilities to which we apply our general framework.

– Risk-averse utility: The agent’s type is a pair t = (v, φ) where v is the private value
and φ is an increasing and concave function that represents the agent’s private risk
preference. We assume that φ(0) = 0. Given allocation x and payment p, her utility is

u((v, φ), x, p) = φ(vx− p).

– Private-budget utility: The agent’s type is a pair t = (v, w) where v is the private
value and w is the private budget constraint. Given allocation x and payment p, her
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utility is

u((v, w), x, p) =

vx− p p ≤ w,

−∞ p > w.

We use F to denote the marginal distribution over values for agents with linear utilities, risk-averse
utilities, or private-budget utilities.

Mechanisms. By the revelation principle (Myerson, 1981), we focus on revelation mechanisms
{(xi, pi)}i∈N , where agents simultaneously submit bids {bi}i∈N from their type spaces to the mech-
anism, and each agent i gets allocation xi({bi}i∈N) with payment pi({bi}i∈N). An allocation is
feasible if

∑
i xi ≤ m where m is the number of items.8

We consider mechanisms that satisfy Bayesian incentive compatibility (BIC), i.e., no agent can
gain strictly higher expected utility than reporting her private type truthfully if all other agents
are reporting their private types truthfully, and interim individual rationality (IIR), i.e., the ex-
pected utility is non-negative for all agents and all private types if all agents are reporting their
private types truthfully mechanisms. For later discussion, we also define dominant strategy incen-

tive compatible (DSIC) for a mechanism if no agent can gain strictly higher expected utility than
reporting her private type truthfully, regardless of other agents’ report. Note that DSIC coincides
with BIC in single-agent environments for linear utilities.

Pricings and Demands. We study mechanisms based on simple per-unit posted pricing. The def-
inition of the pricing-based mechanisms for general multi-agent environments will be introduced
formally in Section 3. In this section, we will focus on pricing for single-agent environments.

Definition 2.1. A per-unit price p denotes the menu {(z, z ·p) : z ∈ [0, 1]}. The agent who chooses

an option (z, z · p) receives an item with probability z, and pays prices z · p regardless of the

allocation.9

Given per-unit price p, the demand of the agent with type t is

dt(p) = argmax
z∈[0,1]

z · u(t, 1, z · p) + (1− z) · u(t, 0, z · p).

For example, a budgeted agent with value v and budget w given per-unit price p will purchase
the lottery d = min{1, w/p} if v ≥ p, and purchase the lottery d = 0 otherwise. Throughout the

8In this paper, in order to simplify the exposition, we focus on the feasibility constraint where any allocation is
feasible as long as the total allocation does not exceed the supply of the principal. Our results can be extended to
multi-unit auctions with more general feasibility constraints. See Appendix B.6 for detailed discussions.

9We focus on all-pay format in our definition of per-unit posted pricing mechanisms. The payment format does not
matter for linear agents, but it affects the incentives for non-linear agents. Our general reduction framework can also
be extended to other payment formats such as winner-pays-it.

9



paper, we will assume that given any price p ≥ 0, the utility of the agent is upper semi-continuous
in chosen lottery z. This implies that the demand maximizing the utility can always be attained.
Additionally, we assume that for any type t ∈ T , 1 ∈ dt(0) and there exists p > 0 such that
dt(p) = 0. We denote the aggregated demand correspondence as D(p) = Et∼F̄ [d

t(p)].

Ordinary Goods Assumption. In this paper, our focus is on the sale of ordinary goods, where
the demand of the agent is non-increasing in the offered per-unit price. This assumption excludes
Giffen goods or Veblen goods and is satisfied by many common utility models, such as risk-averse
utility or private-budget utility.

Assumption 1. The item is an ordinary good, i.e., for any type t, the demand dt(p) is upper hemi-

continuous and weakly decreasing in p in strong set order.

In the special case where the optimal demand is unique, the ordinary good assumption is equiv-
alent to the assumption that the demand function is weakly decreasing in per-unit price p.

Principal’s Objective. We consider general payoff maximization for the principal, where welfare
maximization, revenue maximization and their convex combinations are special cases of payoff
maximization.

Specifically, we assume that the principal is an expected utility maximizer. The principal’s
payoff function is a mapping from the type-outcome pair of each agent to a real value, and it is
additive and separable across different agents. That is, there exists payoff functions {Ψi}i∈N such
that given allocations {xi}i∈N and payments {pi}i∈N for type profile {ti}i∈N , the payoff of the
principal is

Ψ({ti}i∈N , {xi}i∈N , {pi}i∈N) =
∑
i

Ψi(ti, xi, pi).

A special case of the payoff function is the revenue, where Ψi(ti, xi, pi) = pi for any agent i.10

3 Implementation of Pricing-based Mechanisms

In Bayesian mechanism design, the taxation principle suggests that it is without loss to focus on
menu mechanisms: Fixing any agent, the mechanism offers a menu of outcomes (i.e., her allocation
and payment) to the agent, where the menu depends on other agents’ bids.

For non-linear agents, the menu offered in the Bayesian optimal mechanism often requires
complicated price discrimination schemes, and characterizing the optimal mechanism is challeng-
ing even in single-agent environments (c.f., Maskin and Riley, 1984; Maskin, 2000; Che and Gale,

10From now on, “payoff” refers to the principal’s payoff.
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2000). For example, to maximize the revenue from a single private-budget agent, the revenue opti-
mal mechanism involves a complex menu of lotteries, and its menu size can be exponential in the
size of the support of the budget distribution (Devanur and Weinberg, 2017).

Among all menu mechanisms, there is a subclass of simple mechanisms closely related to
price posting – pricing-based mechanisms. The subclass of pricing-based mechanisms considers
mechanisms where the menu (offered by the mechanism to each agent) is equivalent to posting
a per-unit price. For linear agents, it is well known that there exist pricing-based mechanisms
that are optimal in multi-agent environments (Myerson, 1981; Riley and Zeckhauser, 1983; Alaei
et al., 2019). In this section, we provide an implementation of pricing-based mechanisms for non-
linear agents. The performances of pricing-based mechanisms compared to the optimal in various
non-linear utility environments are discussed later in Section 4 and Section 5.

3.1 Price-posting Payoff Curves

In this section, we provide an analysis of the expected payoff of the principal in single-agent
environments. We first define the market clearing price for selling the item to an agent with ex ante
supply constraint q ∈ [0, 1].

Definition 3.1. For any q ∈ [0, 1], the market clearing price pq for the ex ante supply constraint

q is the highest per-unit price at which there exists a tie-breaking rule for demands such that the

aggregated demand is q, i.e., D(pq) = q.11

The existence of the market clearing price is implied by the assumption that the demand cor-
respondence is upper hemi-continuous. Moreover, the ordinary goods assumption implies that the
market clearing price is weakly decreasing in ex ante supply constraint q.

We define the price-posting payoff curves as the expected payoff in the single-agent problems
by posting per-unit prices, as a function of ex ante supply constraints, and we refer to them as
price-posting revenue curves when we focus on revenue as the payoff function. Moreover, since
a price-posting payoff curve is not generally concave, we can apply the ironing technique from
Myerson (1981) to get the concave hull of the price-posting payoff curves, which captures the
optimal payoff the principal can get by posting random prices given the ex ante supply constraint.

Definition 3.2. The price-posting payoff curve P (q) for any q ∈ [0, 1], is defined as the expected

payoff from posting market clearing price pq. The ironed price-posting payoff curve P̄ is the

concave hull of the price-posting payoff curve P .

11In the case where the demand of the agent is not unique, we may need to consider randomized tie-breaking rules
for the demand correspondence in order to satisfy the expected demand constraint.
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Since the price-posting payoff curve is a single-dimensional function, the ironed price-posting
payoff curve P̄ can be obtained by randomizing over at most two per-unit prices for each ex ante
constraint q.

Note that in single-agent environments, the expected payoff of the principal is uniquely cap-
tured by the price-posting payoff curves regardless of the details of the agent’s utility models if
the principal is restricted to posting (randomized) per-unit prices. Later in Sections 3.2 and 3.3,
we will show that this observation extends for general pricing-based mechanisms when there are
multiple agents.

3.2 Pricing-based Mechanisms for Linear Agents

We first introduce the pricing-based mechanisms for linear agents when there are multiple agents.
We will introduce the concept of quantiles and then describe the pricing-based mechanisms for
linear agents in quantile space.

Quantiles for Linear Agents. For an agent with linear utility, the quantile of value v given value
distribution F is defined as

q(v) ∈
[
Pr
z∼F

[z ≥ v], Pr
z∼F

[z > v]
]
,

where quantile q(v) is drawn uniformly randomly if the above interval is not degenerate. For
distributions without point masses, q(v) = 1 − F (v). Conversely, the value corresponding to
quantile q̂ is v(q̂) ≜ supz{q(z) ≥ q̂}. Note that for any distribution F over value v, quantile q is
uniformly distributed between [0, 1].

Based on this mapping for linear agents, any mechanism in the value space can be equivalently
converted to a mechanism in the quantile space, and vice versa. Moreover, for a linear agent, the
market clearing price pq coincides with the value corresponding to quantile q, i.e., pq = v(q).
Without ambiguity, we also refer to P (q) as the price-posting payoff for quantile q.

Pricing-based Mechanisms for Linear Agents. For linear agents, every deterministic, dominant
strategy incentive compatible (DSIC) and interim individual rational (IIR) mechanism (e.g., the
Bayesian optimal mechanism) can be implemented as a pricing-based mechanism (Alaei et al.,
2013).12 Based on our definition of quantiles for linear agents, the pricing-based mechanism for
linear agents in quantile space is defined as follows:

- each agent i’s reported value vi is mapped to quantile qi based on Fi;
12Note that for linear agents, any BIC and IIR mechanism can be converted to a DSIC and IIR mechanism (Gershkov

et al., 2013), and any randomized mechanism can be converted to a deterministic mechanism through purification
(Chen et al., 2019) when type distributions are continuous. Moreover, the revenue optimal mechanism for linear
agents is deterministic and DSIC.
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- there is a threshold function Qi(q−i) for each agent i such that agent i is offered with a
per-unit price pQi(q−i) where q−i ≜ {qj}j∈N\{i}. Agent i receives an item if and only if
qi ≤ Qi(q−i).13

Essentially, Qi(q−i) is the threshold on allocation in the quantile space, and the pricing-based
mechanism is uniquely determined by this profile of threshold functions.

Since the distribution over quantiles is uniform on [0, 1] regardless of the valuation distribu-
tion, the expected payoff of the pricing-based mechanism M with threshold functions {Qi}i∈N is
uniquely pinned down by the price-posting payoff curves {Pi}i∈N as

M({Pi}i∈N) = E{qi}i∈N∼U [0,1]n

[∑
i∈N

Pi(Qi(q−i))

]
.

In the next section, we will use this formula to derive the performance of pricing-based mechanisms
for non-linear agents.

3.3 Pricing-based Mechanisms for Non-linear Agents

In this section, we provide a quantile-space implementation of pricing-based mechanisms for non-
linear agents. For this purpose, we need to first provide a formal definition of quantiles for non-
linear agents. For linear agents, the definition of quantiles is intuitive since higher values are
mapped to lower quantiles according to the cumulative distribution function of the valuation dis-
tribution. In contrast, the construction of quantiles for non-linear agents is not obvious since the
private types of non-linear agents can be multi-dimensional and there may not exist a natural or-
der on types that is consistent for all mechanisms. For example, it is unclear how to rank a more
risk averse agent with high value against a less risk averse agent with low value, or an agent with
high value and low budget against another agent with low value and high budget. In this section,
we introduce a definition of quantiles for non-linear agents based on their demands given market
clearing prices under different ex ante supply constraints.

Quantiles for Non-linear Agents. For a non-linear agent with type t, define function H t(q) =

dt(pq) where dt(pq) is the demand of type t under market clearing price pq that sells the item to
the agent with probability q. Under the ordinary goods assumption, we can focus on tie-breaking
rules such that the demand dt(pq) is weakly increasing in q, which implies that function H t(q) is
weakly increasing in q for all type t.14 Moreover, H t(0) = 0 and H t(1) = 1, and thus H t can be

13It is possible that in pricing-based mechanisms for linear agents, based on the tie breaking rules, agent i receives
an item only if qi < Qi(q−i) for some q−i. In this case, by slightly abusing the notation, we allow Qi(q−i) to take
values such as z+ for z ∈ [0, 1], and we say qi ≤ z+ if and only if qi < z.

14In the case where the demands of the agent need to be randomized to satisfy the expected demand constraint, we
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viewed as a distribution supported on [0, 1] with H t(q) being the cumulative distribution function
of quantile for any type t.

Definition 3.3 (quantiles). For any non-linear agent with type t and demand function dt(·), the

randomized quantile q for type t is drawn from the distribution H t with H t(q) ≜ dt(pq).

Our definition of quantiles for non-linear agents maps the potentially multi-dimensional types
of non-linear agents into single-dimensional quantiles based on the demand functions for per-unit
pricings. Moreover, given any market clearing price, types with higher demands are mapped to
lower quantiles with higher probabilities, and hence are more likely to win an item in pricing-
based mechanisms where items are allocated based on the thresholds in the quantile space. Note
that the definition of quantile for non-linear agents encompasses the definition for linear agents.
In particular, for a linear agent with continuous value distribution and realized value v(q), the
distribution Hv(q) is a point-mass distribution at q and Hv(q)(·) is a step function at q.

This definition of quantiles results in quantiles, for all distributions over non-linear preferences,
being uniformly distributed. Specifically, for any non-linear agent, the cumulative distribution
function of quantile q is

Prt∼F̄,q∼Ht [q ≤ z] = Et∼F̄

[
H t(z)

]
= Et∼F̄

[
dt(pz)

]
= z

where the last inequality holds due to the definition of the market clearing price pz.

Pricing-based Mechanisms for Non-linear Agents. Given the definition of quantiles for non-
linear agents, we define the pricing-based mechanisms for non-linear agents in Algorithm 1, which
first maps the types of all agents into quantiles based on Definition 3.3, and allocates items to
agents based on thresholds in the quantile space.

Theorem 1 (Implementation). For any non-linear agents with price-posting payoff curves {Pi}i∈N ,

the pricing-based mechanism M with threshold functions {Qi}i∈N defined in Algorithm 1 is DSIC

and IIR for non-linear agents, and its expected payoff is

M({Pi}i∈N) = E{qi}i∈N∼U [0,1]n

[∑
i∈N

Pi(Qi(q−i))

]
.

consider a randomization over tie-breaking rules such that the demand function dt(pq) is weakly increasing for all
realized selections. Moreover, for different selections of demand function dt(pq), the defined function Ht(q) may be
different for any given t and q. However, the results in our paper hold for all selection rules satisfying the required
weak monotonicity.

15To simplify the exposition, we only state the payment rules without the consideration of the tie-breaking rules in
the pricing-based mechanism for linear agents. The details for constructing consistent tie-breaking rules are explained
in Appendix C.
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Algorithm 1: Pricing-based Mechanisms for Non-linear Agents
Input: Non-linear agents {(Ti, F̄i, ui)}i∈N ; a pricing-based mechanism M for linear

agents with threshold function {Qi}i∈N on quantiles.

1 For each agent i with private type ti, map the type to a random quantile qi according to
cumulative distribution function H ti

i (·).
2 For each agent i, calculate quantile threshold as q̂i = Qi(q−i).

3 For each agent i, her allocation is xi = 1 if qi ≤ q̂i and xi = 0 otherwise. The payment of
agent i is pi = pq̂i · d(ti, pq̂i) regardless of the allocation.15

Theorem 1 implies that for any set of linear agents and non-linear agents with the same price-
posting payoff curves {Pi}i∈N , given any pricing-based mechanism M for linear agents, there
exists a pricing-based mechanism for non-linear agents with the same allocation rule in the quantile
space that guarantees the same expected payoff. Therefore, we can use M({Pi}i∈N) to represent
the expected payoff of pricing-based mechanism M given price-posting payoff curves {Pi}i∈N
without the consideration of the detailed utility models of the agents. The proof of Theorem 1
relies on the following alternative interpretation of Algorithm 1.

Price-posting Equivalence Interpretation. For agent i with type ti, conditioning on threshold
q̂i = Qi(q−i) which only depends on other agents’ types, her expected allocation over the random-
ness of her quantile qi is

E[1[qi ≤ q̂i] | q̂i, ti] = H ti
i (q̂i) = d(ti, p

q̂i)

and her payment is deterministically pq̂i · d(ti, pq̂i). Therefore, from the perspective of agent i, the
constructed mechanism is equivalent to offering a market-clearing price pq̂i where the threshold
quantile q̂i only depends on other agents’ types.

Proof of Theorem 1. Both DSIC and IIR of mechanism M are immediately guaranteed from the
price-posting equivalence interpretation. Moreover, for any non-linear agent i, conditional on the
event that her threshold quantile is q̂i = Qi(q−i), the expected payoff from agent i in this event is
Pi(q̂i). Therefore, by linearity of expectation, the expected payoff of mechanism M is

M({Pi}i∈N) = Eq∼U [0,1]n

[∑
i∈N

Pi(Qi(q−i))

]
(1)

since the marginal distribution over quantile qi is drawn from a uniform distribution U [0, 1] for all
agent i.
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3.4 Marginal Payoff Maximization

The implementation of pricing-based mechanisms in quantile space is inspired by the marginal
revenue maximization mechanism proposed in Bulow and Roberts (1989) for linear agents. Bulow
and Roberts (1989) show that the marginal revenue maximization mechanism is revenue-optimal
for linear agents. This result can be easily extended to general payoff maximization for linear
agents. Specifically, Alaei et al. (2013) have shown that for linear agents, it is without loss of opti-
mality to focus on pricing-based mechanisms. The expected payoff of a pricing-based mechanism
M with threshold functions Qi(q−i) given price-posting payoff curves {Pi}i∈N can be reformu-
lated in terms of marginal revenue as

M({Pi}i∈N) = Eq∼U [0,1]n

[∑
i∈N

Pi(Qi(q−i))

]
=

∑
i∈N

Eq∼U [0,1]n [Pi(Qi(q−i))]

=
∑
i∈N

Eq∼U [0,1]n [P
′
i (qi) · x̂i(qi, q−i)] = Eq∼U [0,1]n

[∑
i∈N

P ′
i (qi) · x̂i(qi, q−i)

]

where x̂i(·) is the allocation rule in quantile space induced by the threshold function Qi(q−i). That
is, x̂i(qi, q−i) = 1 if and only if qi ≤ Qi(q−i). The second and the last equality holds by the
linearity of expectation, and the third equality holds since by the definition of x̂i(·), we have

Pi(Qi(q−i)) =

∫ 1

0

P ′
i (qi) · x̂i(qi, q−i)dqi = Eqi∼U [0,1][P

′
i (qi) · x̂i(qi, q−i)] .

As interpreted by Bulow and Roberts (1989), P ′
i (qi) can be viewed as the marginal payoffs for

selling an item to agent i with quantile qi. To maximize the expected payoff, the marginal payoff
maximization mechanism (MPM) allocates the items to agents with the highest marginal payoffs
P ′
i (qi). In the case where Pi is concave for any agent i and hence P ′

i (qi) is monotone in qi, the
resulting mechanism is a pricing-based mechanism and maximizes the expected payoff of the prin-
cipal. In the case that Pi(qi) is not concave in qi, we can apply the ironing trick in Myerson (1981)
by considering allocations that maximize the ironed marginal payoffs

∑
i∈N P̄ ′

i (qi) · x̂i(qi, q−i).
For non-linear agents, since restricting attention to pricing-based mechanisms may not be with-

out loss of generality, the marginal payoff maximization mechanism may not be optimal among
all possible mechanisms. Nonetheless, by adopting the same argument as in linear agents, the
marginal payoff maximization mechanism maximizes the principal’s expected payoff among the
subclass of pricing-based mechanisms regardless of the agents’ utility models. Moreover, in Sec-
tion 5, we will show that marginal payoff maximization is approximately optimal for broad classes
of non-linear utilities.

Finally, note that the expected payoff of the marginal payoff maximization mechanism only
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depends on the price-posting payoff curves, not the detailed utility models. Therefore, we denote
the payoff of marginal payoff maximization (MPM) for agents with price-posting payoff curves
{Pi}i∈N as MPM({Pi}i∈N).

3.5 Illustrations of the Implementations

The description of pricing-based mechanisms in the quantile space is beneficial for understand-
ing the economics behind payoff maximization, and will be useful for our subsequent analysis
that shows its optimality or approximate optimality. In this section, we will first illustrate how
simple pricing-based mechanisms are implemented for non-linear agents in the value space using
examples.

Marginal payoff maximization. We first consider the case where agents are risk averse. We show
that any risk-averse agent, when facing a per-unit price, will behave the same as a linear agent. The
proof of this claim is provided in Appendix A.1.

Claim 1. For any risk-averse agent with type t = (v, φ) and for any per-unit price p, the expected

utility of the agent is maximized at allocation z ∈ {0, 1}.

Therefore, the price-posting payoff curves of risk-averse agents coincide with the price-posting
payoff curves of linear agents with the same value distributions. Moreover, the pricing-based
mechanisms for risk-averse agents also coincide with linear agents in the value space. For example,
for i.i.d. linear agents with regular valuation distributions, the marginal revenue maximization
mechanism can be implemented as the second price auction with monopoly price as the anonymous
reserve (Myerson, 1981). Our observations above imply that for risk-averse agents with i.i.d.
value distributions and arbitrary distribution on the risk aversion function, the marginal revenue
maximization mechanism can also be implemented as the second price auction with monopoly
price as the anonymous reserve.

The implementation of marginal revenue maximization is trickier for other non-linear utilities
such as budgeted utilities. The main reason is that a budgeted agent behaves differently from a
linear agent when facing per-unit prices. For example, consider two public-budget agents with
values drawn from i.i.d. distributions that are uniform in [0, 1]. All agents have a public budget of
1
2
. In this example, it is easy to compute that for any agent i with value vi, the demand function is

d(vi, p
q) =

0 vi < min
{

1
1+2q

, 1− q
}

min
{
1, 1

2
+ q

}
vi ≥ min

{
1

1+2q
, 1− q

}
.

Moreover, the cutoff quantile for the marginal revenue being 0 is 1
2
. Note that according to the

demand function, any value vi < 1
2

has a deterministic quantile 1 − vi > 1
2
. Therefore, in the
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marginal revenue maximization mechanism, if both agents have values below 1
2
, the item is not

sold and the revenue is 0. If only one agent has a value above 1
2
, the higher value agent receives

the item with probability 1 and price 1. If both agents have values above 1
2
, and we assume that

v1 ≥ v2 ≥ 1
2

and tie is broken in favor of agent 1, then agent 1 will receive an item with probability
5
8
+ 1

2
(v2 + v22) and agent 2 will receive an item with the remaining probability. This allocation

probability is calculated based on the mapping to randomized quantiles defined in Algorithm 1. In
the last case, agent 1 always pays a deterministic price of 1

2
, and agent 2 pays a deterministic price

of 1
2

only with probability 1− 1
2v2

.

Sequential posted pricing. Another simple pricing-based mechanism that is widely adopted in
practice is sequential posted pricing (SPP). Intuitively, sequential posted pricing mechanisms ap-
proach the agents according to a given order and sell the items to agents using per-unit prices until
the supply runs out. Next, we provide a formal definition of sequential posted pricing in quantile
space.

Definition 3.4. A sequential posted pricing mechanism is parameterized by ({ôi}i∈N , {q̂i}i∈N)
where {ôi}i∈N denotes an order of the agents and {q̂i}i∈N denotes the cutoffs in quantile space.

Agent i receives an item if his randomized quantile is at most q̂i and the items are not sold out to

previous agents, i.e., the threshold functions {Qi}i∈N satisfy that Qi(q−i) = q̂i ·
∏

j:ôj<ôi
1[qj > q̂j].

Note that the payoff of the sequential posted pricing mechanism is also uniquely determined
by the price-posting payoff curves {Pi}i∈N of the agents. Therefore, we denote SPP({Pi}i∈N) as
the optimal payoff among the class of sequential posted pricing mechanisms.

To implement the sequential posted pricing mechanism in the value space, it can be viewed
as sequentially offering market clearing price pq̂i to each agent i according to order {ôi}i∈N if
items are not sold out to previous agents. In the sequential posted pricing mechanism, each agent’s
optimal demand may be a non-degenerate lottery given per-unit prices, and we assume that the
lottery is realized immediately after each agent’s purchase decision.

4 Robust Optimality

In this section, we focus on a robust setting wherein the seller possesses only the knowledge of the
agents’ aggregated demand functions, lacking detailed information regarding the non-linear utility
function or the type distribution. We show that the marginal revenue maximization mechanism
(see Section 3.4) is robustly optimal in such environments.

Given any aggregated demand function D(p) that is a non-increasing function,16 let P(D) be

16We focus on non-increasing demand functions since it is without loss under the ordinary good assumption.
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the set of feasible agent utility models (T , F̄, u) such that for any p ≥ 0,

D(p) = Et∼F̄

[
dt(p;u)

]
where dt(p;u) is the demand function of type t ∈ T induced by utility function u. Note that the
aggregated demand function uniquely pins down the price-posting revenue curve P regardless of
the utility models.

For any mechanism M, let M(
{
(Ti, F̄i, ui)

}
i∈N) be the expected revenue of mechanism M

given a profile of utility models
{
(Ti, F̄i, ui)

}
i∈N . In this section, we assume that the seller can only

observe the aggregated demand function Di(p) for all agents i without knowing the detailed utility
models (Ti, F̄i, ui). The justification is that the detailed utility models are often hard to estimate
based on the historical purchase data from consumers for practical applications. However, it is
relatively easier to estimate the demand functions based on posted pricing (Bajari et al., 2015).

When the seller is ignorant of the detailed utility models, the robust approach considers the
objective of maximizing the expected revenue over the worst-case utility models that are consistent
with the observed aggregated demand functions. That is, the seller chooses a mechanism M to
maximize

min
(Ti,F̄i,ui)∈P(Di),∀i∈N

M(
{
(Ti, F̄i, ui)

}
i∈N).

Theorem 2. For any profile of non-increasing aggregated demand functions {Di}i∈N , if the seller

does not observe the detailed profile of utility models, the marginal revenue maximization mecha-

nism is the max-min revenue optimal mechanism, i.e.,

MPM ∈ argmax
M

min
(Ti,F̄i,ui)∈P(Di),∀i∈N

M(
{
(Ti, F̄i, ui)

}
i∈N).

The interpretation of the robustness result is that if the seller is uncertain about the detailed
utility models, they should avoid resorting to complex lottery mechanisms for second-degree price
discrimination.

Proof. Note that in the robust environments, the seller does not know the detailed utility model to
compute the demands based on the report types. Fortunately, the implementation of pricing-based
mechanisms for non-linear agents in Algorithm 1 only requires the knowledge of the aggregated
demand functions, and the seller can directly elicit the demand functions dtii (p) as a function of p
from the agents in order to compute the randomized quantile qi for them. Using the same argument
as in Theorem 1, it is a weakly dominant strategy for all agents to truthfully report their demand

19



functions, and the expected revenue of the marginal revenue maximization mechanism is

MPM({Pi}i∈N) = max
pricing-based mech. M†

M†({Pi}i∈N)

regardless of the underlying utility model. Moreover, given any non-decreasing demand func-
tion Di, there exists a linear utility model (T ∗

i , F̄
∗
i , u

∗
i ) with T ∗

i = R, u∗
i (t, x, p) = t · x − p such

that (T ∗
i , F̄

∗
i , u

∗
i ) ∈ P(Di). Moreover, for agents with linear utilities, the revenue-optimal mech-

anism is marginal revenue maximization even when the seller knows the detailed utility model.
Therefore, for any mechanism M, we have

min
(Ti,F̄i,ui)∈P(Di),∀i∈N

M(
{
(Ti, F̄i, ui)

}
i∈N) ≤ M(

{
(T ∗

i , F̄
∗
i , u

∗
i )
}
i∈N)

≤ max
pricing-based mech. M†

M†({Pi}i∈N) = MPM({Pi}i∈N).

That is, the marginal revenue maximization mechanism is robustly optimal for non-linear agents.

Remark: As illustrated in the proof of Theorem 2, the robust optimality of the marginal revenue
maximization mechanism holds as long as the ambiguity set includes the linear utility model. This
observation implies that our results remain valid even when the principal possesses more refined
knowledge about the agents’ utility models—for example, knowing that agents are risk-averse or
face budget constraints. Based on this, we can immediately derive two corollaries.

• Suppose the principal knows that the agents are (weakly) risk-averse and knows their valua-
tion distributions, but is uncertain about the specific risk preferences of the agents. Our result
implies that marginal revenue maximization—which, in symmetric environments with risk-
averse agents, can be implemented via a second-price auction with monopoly reserves—is
robustly optimal in the presence of such uncertainty.

• Suppose the principal knows that the agents are risk-neutral but face budget constraints,
while being uncertain about the joint distributions over values and budgets—except for their
aggregated demand functions. Our result implies that marginal revenue maximization re-
mains robustly optimal in this case.

5 Reduction Framework and Approximation Guarantees

For non-linear agents, the pricing-based mechanisms proposed in Section 3 in general are not op-
timal for payoff maximization if the principal has precise information regarding the environments.
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In this section, we show that those mechanisms are approximately optimal for broad classes of
non-linear utilities by providing a reduction framework that extends the approximation bounds of
pricing-based mechanisms for linear agents to non-linear agents. An important application of our
general reduction framework is that the robustly optimal mechanism, marginal payoff maximiza-
tion, is approximately optimal against the optimal detail-dependent mechanism.

Specifically, our reduction framework (Theorem 3) will show that when non-linear agents have
small resemblances, by focusing on pricing-based mechanisms that are robust to the details of the
non-linear model, the payoff loss from this reduction is not large.

5.1 Optimal Payoff Curves and Resemblance

In this section, we analyze the single-agent problem with ex ante supply constraints. We define
the optimal payoff curves as follows. The main difference between the optimal payoff curves and
the price-posting payoff curves (Definition 3.2) is that the former does not restrict attention to
mechanisms that post per-unit prices.

Definition 5.1. The optimal payoff curve R(q) is a mapping from any ex ante supply constraint q

to the optimal ex ante payoff for the single agent problem that in expectation sells the item with

probability q, i.e.,

R(q) = max
π is BIC, IIR

E(x,p)∼π[Et∼F̄ [Ψ(t, x(t), p(t))]]

s.t. E(x,p)∼π[Et∼F̄ [x(t)]] = q.

Lemma 1. The optimal payoff curve is concave.

This lemma is immediate since in this case the space of incentive compatible mechanisms is
closed under convex combination, and the payoff function is linear in the space of mechanisms.
Next we review the relation between the optimal revenue curves and the concave hull of the price-
posting revenue curves for linear agents.

Lemma 2 (Bulow and Roberts, 1989). The optimal revenue curve R of a linear agent is equal to

her ironed price-posting revenue curve P̄ .

In general, for non-linear agents, the optimal payoff (e.g., revenue) curves and the ironed price-
posting payoff curves are not equivalent, and the mechanism maximizing the ex ante payoff is
more complicated and extracts strictly higher payoff than the optimal price posting mechanism or
randomizations over price posting mechanisms. We quantify the extent to which a non-linear agent
resembles a linear agent based on the maximum payoff gap between posted pricing and optimal
mechanisms in a single-agent environment with ex ante supply constraints.
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Figure 1: The thin dashed curve is the optimal payoff curve scaled by a factor of ζ , and the thick
dashed curve is the monotone extension of the ironed price-posting payoff curve.17 The definition
of ζ resemblance is satisfied if the thick dashed curve is always above the thin dashed line.

ζ-resemblance. We introduce ζ-resemblance of an agent to measure how closely a non-linear
agent resembles a linear agent whose ironed price-posting payoff curve and optimal payoff curve
are equal. This definition is illustrated in Figure 1. Note that based on our definition, Lemma 2
implies that a linear agent is 1-resemblant.

Definition 5.2 (ζ-resemblance). An agent’s ironed price-posting payoff curve P̄ is ζ-resemblant to

her optimal payoff curve R, if for all q† ∈ [0, 1], there exists q ≤ q† such that P̄ (q) ≥ 1/ζ · R(q†).

Such an agent is ζ-resemblant.

Our definition implies that for a ζ-resemblant agent, given any ex ante supply constraint q, there
exists a distribution over per-unit prices with expected sale probability at most q that achieves at
least 1

ζ
fraction of the optimal payoff with this ex ante constraint.18 Since posted pricing mecha-

nisms are optimal mechanisms for a linear agent, smaller ζ implies that non-linear agents resemble
linear agents better.

5.2 Reduction Framework

The reduction framework in this section relies on the following technique of ex ante relaxation for
bounding the optimal payoff of the principal.

Ex Ante Relaxation. In general for non-linear agents, it is challenging to characterize the optimal
mechanism and quantify the optimal payoff of the principal. Thus, we adopt the benchmark of ex

ante relaxation (Yan, 2011), which serves as an upper bound of the optimal payoff. For selling m

units of identical items, a sequence of ex ante quantiles {qi}i∈N is ex ante feasible if
∑

i qi ≤ m.

17We consider the monotone extension of the ironed price-posting payoff curve, as we allow for underselling when
analyzing the optimal revenue from price-posting mechanisms under ex ante supply constraints. Our condition is
weaker than requiring that P̄ (q) ≥ 1/ζ ·R(q) for all q ∈ [0, 1].

18This is equivalent to an environment of selling items to a continuum of agents with a supply constraint, where ζ-
resemblance measures the worst-case gap (over all possible supplies) between optimal mechanisms and posted pricing
mechanisms for non-linear agents.
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We denote the set of ex ante feasible quantiles by EAF. The optimal ex ante payoff given the
optimal payoff curves {Ri}i∈N is

EAR({Ri}i∈N) = max
{qi}i∈N∈EAF

∑
i∈N

Ri(qi).

Note that EAR({Ri}i∈N) is an upper bound on the optimal payoff since any feasible mechanism
must satisfy the ex ante feasibility constraints, and the ex ante payoff optimizes the principal’s
expected payoff under such constraints. Moreover, the ex ante payoff is uniquely determined by
the optimal payoff curves regardless of the detailed utility models of the agents.

Reduction of Approximation Guarantees. Now we present the following theorem: a reduction
framework that extends the approximation guarantees of every pricing-based mechanism for linear
agents to non-linear agents.

Theorem 3 (Reduction Framework). For any pricing-based mechanism M and any set of non-

linear agents with price-posting payoff curves {Pi}i∈N and optimal payoff curves {Ri}i∈N , if

• all non-linear agents are ζ-resemblant; and

• mechanism M is a γ-approximation to the ex ante relaxation for linear agents with the same

price-posting payoff curves, i.e., M({Pi}i∈N) ≥ 1/γ · EAR({P̄i}i∈N),

then mechanism M for non-linear agents (from Algorithm 1) is a γ ζ-approximation to the ex ante

relaxation, i.e., M({Pi}i∈N) ≥ 1/γ ζ · EAR({Ri}i∈N).

Before the proof of Theorem 3, we first explain the conditions in Theorem 3, and in particular
why we refer to condition M({Pi}i∈N) ≥ 1/γ · EAR({P̄i}i∈N) as the approximation guarantees
for linear agents.

Note that for both pricing-based mechanism M and the ex ante relaxation, the expected pay-
off of the principal only depends on the price-posting payoff curves and optimal payoff curves
respectively, not on the details of the utility models. Therefore, for any set A of non-linear agents
with price-posting payoff curves {Pi}i∈N , we can define a linear agents analog as a set AL of
agents with the same price-posting payoff curves.19 By Theorem 1, the expected payoffs of mech-
anism M are the same for both non-linear agents A and the linear agents analog AL, which equals

19For payoff functions such as the revenue, the linear agents analog is well defined since the price-posting revenue
curve P (q) of a linear agent uniquely pins down her valuation distribution as v(q) = P (q)

q . For general payoff function,
given the price-posting payoff curves {Pi}i∈N of the non-linear agents, there may not exist type distributions for linear
agents such that their price-posting payoff curves coincide with {Pi}i∈N . However, both the payoffs for pricing-based
mechanisms and the ex ante relaxation are well defined given the payoff curves, and Theorem 3 does not rely on the
existence of type distributions for linear agents that correspond to the given price-posting payoff curves. Hence, we
can refer to the linear agents analog even without the existence of the underlying type distributions.
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M({Pi}i∈N) defined in Equation (1). Moreover, by Lemma 2, the optimal payoff curves for the
linear agents analog are {P̄i}i∈N , and hence the optimal ex ante payoff for the linear agents analog
is EAR({P̄i}i∈N). Therefore, the condition that M({Pi}i∈N) ≥ 1/γ · EAR({P̄i}i∈N) can be inter-
preted as the approximation ratio of pricing-based mechanism M for the linear agents analog with
respect to its ex ante relaxation benchmark.20

Another condition in Theorem 3 is the requirement that all non-linear agents are ζ-resemblant.
This condition is also necessary for pricing-based mechanisms to be approximately optimal for
non-linear agents. Without this assumption, even in single-agent environments with supply con-
straints, there exists mechanisms with more complicated price discrimination schemes that signif-
icantly outperform simple pricing-based mechanisms.

Proof of Theorem 3. Given the assumption that pricing-based mechanism M is approximately op-
timal for linear agents, i.e., M({Pi}i∈N) ≥ 1/γ · EAR({P̄i}i∈N), it is sufficient to show that
EAR({P̄i}i∈N) ≥ 1/ζ · EAR({Ri}i∈N) when all non-linear agents are ζ-resemblant.

Let {q†i }i∈N ∈ EAF be the profile of optimal ex ante quantiles for optimal payoff curves
{Ri}i∈N . Since the ironed price-posting payoff curves {P̄i}i∈N are ζ-resemblant to the optimal
payoff curves {Ri}i∈N , there exists a sequence of quantiles {qi}i∈N such that for any agent i,
qi ≤ q†i and P̄ (qi) ≥ 1/ζ ·R(q†i ). Note that {qi}i∈N is also ex ante feasible. Therefore,

EAR({Ri}i∈N) =
∑
i∈N

Ri(q
†
i ) ≤ ζ ·

∑
i∈N

P̄i(qi) ≤ ζ · EAR({P̄i}i∈N).

Note that our reduction framework (Theorem 3) is useful for practical applications only if both
conditions in the statement are satisfied for commonly adopted pricing-based mechanisms and
non-linear utilities. The validity of these assumptions is provided in the following subsections.

5.3 Approximations of Pricing-based Mechanisms

In this section, we will mainly focus on the application of two simple mechanisms, marginal payoff
maximization and sequential posted pricing. The definitions of these two mechanisms have been
provided in Section 3.

Marginal Payoff Maximization. For linear agents, Bulow and Roberts (1989); Alaei et al. (2013)
have shown that marginal payoff maximization is optimal for payoff maximization. If this mech-
anism is compared to the ex ante relaxation, Yan (2011) shows that the worst-case approximation
factor is at most 1/(1− 1√

2πm
) for selling m units of identical items. Combining this with Theorem 3,

we obtain the following corollary.

20This condition is necessary for our reduction framework since linear utility is a special case of non-linear utilities.
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Corollary 1. For selling m units of identical items to any set of non-linear agents with price-

posting payoff curves {Pi}i∈N that are ζ-resemblant to their optimal payoff curves {Ri}i∈N ,

marginal payoff maximization is a ζ/(1− 1√
2πm

)-approximation to the ex ante relaxation for non-

linear agents, i.e., MPM({Pi}i∈N) ≥ 1
ζ
· (1− 1√

2πm
) · EAR({Ri}i∈N).

Sequential Posted Pricing. Yan (2011) shows that the worst-case approximation factor of se-
quential posted pricing to the ex ante payoff is also at most 1/(1− 1√

2πm
) for selling m units to linear

agents. Combining this with Theorem 3, we obtain the following corollary.

Corollary 2. For selling m units of identical items to any set of non-linear agents with price-

posting payoff curves {Pi}i∈N that are ζ-resemblant to their optimal payoff curves {Ri}i∈N , se-

quential posted pricing is a ζ/(1− 1√
2πm

)-approximation to the ex ante relaxation for non-linear

agents, i.e., SPP({Pi}i∈N) ≥ 1
ζ
· (1− 1√

2πm
) · EAR({Ri}i∈N).

Discussions of Approximations. Note that in the approximation factor, the term 1 − 1√
2πm

con-
verges to 1 in the large market where m increases to infinity. The term ζ measures how close
the non-linear agents resemble linear agents, and the approximation factor becomes better when
non-linear agents become more resemblant of linear agents. Corollaries 1 and 2 implies that the
approximation ratio will be close to 1 in large markets for non-linear agents that closely resemble
linear agents. This implies that sequential posted pricings are approximately optimal for those
non-linear agents. The interpretation is that competition and simultaneous implementation are not
salient features for payoff maximization even when agents have non-linear utilities.

Moreover, even in small markets where m is small, both marginal payoff maximization and
sequential posted pricing remain a constant approximation to the optimal revenue. This holds
for arbitrary non-linear agents that are ζ-resemblant, and there is no additional requirement for
the type distributions or detailed utility models. In particular, the results apply even when half
of the agents are risk averse and the other half have private budget constraints. Although those
two mechanisms still entail a constant loss in expected payoffs, the interpretation of the results
is not to take the constant factors too literally. First, as we will illustrate later in Section 5.5, the
actual performance of those mechanisms can be much better than the worst case bound given real
instances. Secondly, the main economic insights should be derived through relative comparisons
of approximation factors among different simple mechanisms. For instance, if the principal uses
an anonymous pricing mechanism for revenue maximization when agents are asymmetric, the
worst case approximation factor for linear agents is unbounded when the number of items is large.
However, the two pricing-based mechanisms we propose are approximately optimal even for non-
linear utilities as long as they are ζ-resemblant for small ζ .
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5.4 Resemblance for Revenue Maximization

In this section, we instantiate our reduction framework by showing that the resemblance property
is indeed satisfied for canonical models of non-linear utility. We focus on the objective of rev-
enue maximization in this section, and show that both risk-averse agents and private-budget agents
resemble linear agents under mild assumptions of the valuation distributions. In Appendix A.2,
we show that those assumptions are necessary for pricing-based mechanisms to be approximately
optimal even in single-agent settings without ex ante supply constraints. The extensions to welfare
and other objective functions are discussed in Section 6.1

Since we will focus on the single-agent analysis in this section, we will drop the subscript
representing the agent in all notations.

5.4.1 Risk-averse Agent

For a risk-averse agent, her private type is represented by a pair t = (v, φ) where v is the pri-
vate value for the item and φ represents the agent’s risk preference. Note that we allow arbitrary
correlations between the values and risk preferences, and we do not impose structures on the risk
preferences such as constant absolute risk aversion (CARA) utilities.

Recall that F is the marginal distribution over values. We assume that distribution F satisfies
the monotone hazard rate (MHR) condition. This condition is satisfied by many common distribu-
tions in practice such as uniform, exponential, and Gaussian distributions.

Definition 5.3. A distribution F with density function f satisfies monotone hazard rate (MHR)
condition if the hazard rate function h(v) ≜ f(v)

1−F (v)
is non-decreasing in v.

Essentially, Definition 5.3 implies that the tail probabilities in the valuation distribution are
small, i.e., smaller than the exponential distribution (see, e.g., Allouah and Besbes, 2018). That is,
the purpose of this assumption is to rule out fat-tail distributions.

Proposition 1. A risk-averse agent is e-resemblant if her marginal value distribution satisfies MHR

condition.

The formal proof of the proposition can be found in Appendix A.1. At a high level, the proof
consists of a two-step argument. First, we argue that for every mechanism, its expected revenue is
upper bounded by the expected allocated value due to the individual rationality constraint. One of
the main technical challenges for analyzing risk-averse agents is that the revenue-optimal mecha-
nism is hard to characterize even for a single agent under specific structures such as CARA. Thanks
to the first step, we bypass this challenge since it now suffices to compare the optimal expected
allocated value achieved among all mechanisms with the optimal expected revenue among posted
pricing mechanisms, in which we prove the gap is at most e under the MHR condition.
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5.4.2 Budgeted Agent

For a private-budgeted agent, her private type is represented by a pair t = (v, w) where v is
the private value for the item and w represents the agent’s private budget constraint. In contrast
to the previous resemblance analysis for risk-averse agents, where arbitrary correlations between
values and risk preferences are allowed, here we make the assumption that values and budgets are
independent.

Intuitively, when values and budgets are correlated, especially if values are negatively corre-
lated with budgets, imposing a high payment with a small probability for low-value types would
lead to high-value agents with low budgets being unable to select this option due to budget con-
straints. As a result, the information rent of the agents becomes almost negligible, and the op-
timal mechanism can extract revenue close to the full surplus in such cases.21 However, such
extreme price discrimination and full surplus extraction due to correlation structures are arguably
impractical for real-world applications. Thus, in this section, we focus on cases where the budget
distribution is independent of the valuation distribution for private-budget agents.

In addition to the independence assumption, we also impose the standard regularity condition
on the marginal value distribution F over values. This condition is strictly weaker than the MHR
condition and can even include long-tail distributions such as Pareto distributions with a shape
parameter at least 1.

Definition 5.4. A distribution F with density function f is regular if the virtual value function

ϕ(v) ≜ v − 1−F (v)
f(v)

is non-decreasing in v.

Proposition 2. A private-budget agent is 3-resemblant if her value and budget are independently

distributed, and her marginal value distribution is regular.

The formal proof of the proposition can be found in Appendix A.4. Moreover, in Appendix A.3,
we show that the approximation factor can be improved if the distribution over budgets is a point
mass distribution, i.e., the budget of the agent is public. In particular, an agent with a public budget
and a regular valuation distribution is 1-resemblant. That is, posting a per-unit price is revenue
optimal for such a non-linear utility agent.

5.5 Examples for Approximation Guarantees

In this section, we use numerical evaluations to illustrate the approximations of sequential posted
pricing mechanisms on more realistic instances. As discussed earlier, this also implies upper
bounds on the approximations of marginal payoff maximization mechanisms. We will focus on

21We formalize this intuition in Example A.1.
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Figure 2: The above figure plot the revenue (normalized by the number of items m) as a function
of n

m
for both risk-averse agents and private-budget agents. The expected revenue for sequential

posted pricing is computed when m = 5 (thin solid line) and m = 20 (thin dashed line). An upper
bound of the optimal revenue through ex ante relaxation is illustrated by the thick solid line. Note
that this normalized upper bound does not depend on the value of m.

selling m units of identical items to n > m i.i.d. agents with the objective of revenue maximization.
We only provide a simple illustration in this section, and the details for numerical computations
are provided in Appendix B.7.

Risk-averse Utility. We consider agents with risk-averse utilities. Recall that a risk-averse agent’s
type is a pair t = (v, φ). In particular, we focus on a simple example where each agent has a
constant absolute risk aversion (CARA) utility function, i.e.,

φ(z) =
1

a
(1− exp (−az))

for risk parameter a > 0, where exp(·) is the exponential function, and a private value drawn from
a uniform distribution on [0, 1].

Private-budget Utility. We now consider agents with private-budget utilities where the values are
independent of the budgets. This model is a generalization of the single-item setting studied in
Che and Gale (2000) for a single agent and in Pai and Vohra (2014) for multiple agents. In both
scenarios, the optimal mechanisms are complicated. For numerical analysis, we consider budget
constrained agents whose value and budget are drawn independently from uniform distribution on
[0, 1].

Numerical Evaluations. Note that in general computing the optimal revenue for both risk-averse
agents and private-budget agents is challenging. Therefore, in the comparison of revenues in Fig-
ure 2, instead of plotting the optimal revenue, we will plot the upper bound on the optimal revenue
through the technique of ex ante relaxation. As illustrated in Figure 2, the gap between the expected
revenue from sequential posted pricing and the upper bound of the optimal revenue is small, espe-
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cially when both n and m are large. For example, the multiplicative revenue gap when n = 200

and m = 20 is less than 1.153 for risk-averse agents and less than 1.095 for private-budget agents.

Discussions of Examples. In the preceding numerical calculations, we showed that in i.i.d. en-
vironments, the revenue of sequential posted pricing mechanisms are approximately optimal for
both risk-averse agents and private-budget agents. Since we replaced the optimal revenue with an
upper bound derived through the ex ante relaxation, the actual gap between the optimal revenue
and sequential posted pricing is even smaller compared to the illustration in Figure 2. The numer-
ical analyses complement our theoretical results by showing that in practical scenarios, the actual
performance of these simple mechanisms can significantly outperform the worst-case bounds, es-
pecially in large markets where both n and m are large.

6 Conclusions and Extensions

This paper develops a general framework for extending mechanism design results from linear to
non-linear agents. By introducing a novel notion of random quantiles derived from the agents’ de-
mand functions, we provide an implementation of pricing-based mechanisms for non-linear agents
in quantile space, which achieves the same payoff as in the linear case with the same aggregate
demands. This implementation allows us to establish that the marginal revenue maximization
mechanism, which is revenue-optimal for linear agents, remains robustly optimal for non-linear
agents when the principal faces uncertainty about utility models and type distributions.

Building on this implementation, we also propose a reduction framework that extends the ap-
proximation guarantees of pricing-based mechanisms from linear to non-linear agents. Central
to this framework is a novel resemblance property, which quantifies the gap between the optimal
mechanism and posted pricing for single-agent problems with non-linear utilities and ex ante sup-
ply constraints. As applications of the framework, we derive approximation bounds for various
mechanisms under different non-linear utility models (e.g., risk-averse and budgeted utility) in
revenue-maximization settings.

We next discuss several important extensions of our framework.

6.1 Resemblance for General Payoff Functions

In this section, we show that our framework applies broadly beyond revenue maximization, e.g.,
welfare maximization or the convex combination of welfare and revenue maximization.

For the objective of welfare maximization, the VCG mechanism achieves the optimal welfare
for linear agents. Since the behaviors of risk-averse agents are the same as linear agents when
facing per-unit prices (Claim 1), the VCG mechanism also maximizes the welfare for those agents.
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However, for general non-linear agents, VCG style mechanisms may not exist and the optimal
mechanisms for welfare maximization may be very complex. For example, for agents with public
budget constraints, Maskin (2000) shows that the welfare-optimal mechanism takes the form of an
all-pay auction for symmetric agents, and Feng and Hartline (2018) further show that this mech-
anism cannot be implemented as a DSIC mechanism. However, by showing that budgeted agents
resemble linear agents for the welfare, there exist simple pricing-based mechanisms, which are
DSIC for agents with budget constraints, that are approximately optimal for welfare maximization
even when agents have private budget constraints and when agents are asymmetric in ex ante. The
proof of the following proposition is provided in Appendix B.1.

Proposition 3. An agent with a private budget has the price-posting welfare curve P that is 2-

resemblant to her optimal welfare curve R if the budget is drawn independently from the valuation.

For more complex payoff functions such as the convex combination of welfare and revenue
maximization, we can extend our previous results to show that if an agent resembles linear agents
for both welfare maximization and revenue maximization, this agent resembles linear agents for
any convex combination of the two objectives. This observation relies on the following lemma,
with proof provided in Appendix B.2.

Lemma 3. If an agent is ζ-resemblant for objective 1 and ζ ′-resemblant for objective 2 with non-

negative values, then this agent is (ζ + ζ ′)-resemblant for any convex combination of the two

objectives.

6.2 Heterogeneous Utility Models

Our resemblant definitions are monotonic, formalized in the subsequent lemma. With this obser-
vation, our framework can be applied to environments with heterogeneous utility functions. For
example, suppose some of the agents have private budget constraints and some of the agents are
risk averse. If each agent i ∈ N is ζi-resemblant, sequential posted pricing for these agents is
a e

e−1
· maxi{ζi}-approximation to the optimal ex ante relaxation. This observation relies on the

following lemma, which can be derived directly based on the definition of resemblance.

Lemma 4. For any ζ ′ ≥ ζ ≥ 1, ζ-resemblant implies ζ ′-resemblant.

6.3 Reduction Framework for Non-expected Utilities

In this paper, we have focused on designing simple mechanisms for agents with expected utility
representations. For agents with non-expected utilities, given a distribution over per-unit prices, the
demand of the agent may be different from her expected demand when she faces the realizations
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of the per-unit prices in the given distribution. Therefore, our implementation in Section 3 fails
to construct an incentive-compatible mechanism for agents with non-expected utilities due to the
inherent randomness of the per-unit prices based on the quantiles of other agents.

We show that for a special class of pricing-based mechanisms called posted pricing mechanisms

(defined in Section 5.3), the payoff guarantees for linear agents can be approximately extended to
agents with non-expected utilities. The details of the reduction are analogous to Theorem 3 and
hence are deferred to Appendix B.3.

Note that the ordinary goods assumption is not required in the reduction framework for se-
quential posted pricing mechanisms. Consequently, these mechanisms can be effectively applied
for the sale of Giffen goods or Veblen goods, providing approximately optimal revenue guarantees,
irrespective of whether the non-linear agents have expected utility representations.

The crucial feature in sequential posted pricing mechanisms that allows for such generalization
is that before each agent purchases a lottery from the seller, she is informed about the realizations
of the per-unit prices she faces. Therefore, her demand choice in this multi-agent mechanism is
consistent with the demand in her single-agent price-posting payoff curve without any assump-
tions, and thus the resulting mechanism is incentive compatible for any non-expected utilities and
guarantees identical payoffs compared to the linear agent analog.

6.4 Anonymous Pricing

A desirable property for the multi-agent setting is anonymity. This requires that the per-unit prices
posted to all agents are the same. However, the approximation guarantees of anonymous pricing
for linear agents do not extend to non-linear agents with general payoff functions such as welfare
maximization. The main reason is that given any quantile q, the market clearing price pq usu-
ally depends on the details of the utility function as well as the payoff function instead of just
depending on the price-posting payoff curve. For example, for the objective of welfare maximiza-
tion, although anonymous pricing guarantees 2-approximation for linear agents (Lucier, 2017), it
may lead to huge welfare loss for non-linear agents. See Example B.2 in Appendix B.4 for an
illustration.

In this section, we will focus on revenue maximization, and show that the approximation guar-
antees of anonymous pricing for linear agents extend to non-linear agents for revenue. The main
reason why anonymous pricing extends for revenue maximization is because given any quantile q,
the market clearing price pq is uniquely pinned down by the price-posting revenue curve P (q) as
pq = P (q)

q
. This definition does not depend on the details of the utility function.

In general multi-unit auctions, anonymous pricing is not a constant approximation to the opti-
mal revenue even for linear agents (Jin et al., 2021). In the special case of single-item auctions, for
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linear agents, Alaei et al. (2019); Jin et al. (2019) showed that the central assumption for constant
approximation of anonymous pricing is concavity of the price-posting revenue curves. Next, we
provide a general reduction framework for anonymous pricing for non-linear agents in single-agent
environments. Note that AP({Pi}i∈N) is the optimal revenue from anonymous pricing when the
price-posting revenue curves are {Pi}i∈N . The proof of the following proposition is provided in
Appendix B.4

Proposition 4. Fix any set of (non-linear) agents with price-posting revenue curves {Pi}i∈N that

are ζ-resemblant to their optimal revenue curves {Ri}i∈N . If the price-posting revenue curves are

concave, then anonymous pricing is a ζe-approximation to the ex ante relaxation on the optimal

revenue curves, i.e., AP({Pi}i∈N) ≥ 1/ζe · EAR({Ri}i∈N).

As instantiations of the reduction framework in Proposition 4, we can show that agents are
1-resemblant and have concave price posting revenue curves when they have public budgets and
regular valuation distributions, and they are e-resemblant when they are risk averse and their valu-
ation distributions satisfy the monotone hazard rate condition.

6.5 Dominant Strategy Implementation

All mechanisms implemented in our paper are dominant strategy incentive compatible mecha-
nisms. In contrast to linear agents, where any Bayesian incentive compatible mechanism can be
implemented in dominant strategies for single item auctions (Gershkov et al., 2013), it is not with-
out loss to consider dominant strategy incentive compatible mechanisms for non-linear agents (e.g.,
Feng and Hartline, 2018; Fu et al., 2018). Our results have implications for the line of work fo-
cusing on the design of strategically simple mechanisms (e.g., Chung and Ely, 2007; Börgers and
Li, 2019). A consequence of our results is that for a broad family of non-linear agents, dominant
strategy incentive compatible mechanisms are approximately optimal for any convex combination
of welfare and revenue as the objective function.
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A Missing Proofs for Resemblance of Revenue Maximization

A.1 Risk Aversion

We first show that given per-unit prices, a risk averse agent behave in the same way as a linear
agent.

Proof of Claim 1. Given any per-unit price p, agent’s expected utility with demand z is

z · φ(v − z · p) + (1− z) · φ(−z · p) ≤ φ(z · (v − p))

by Jensen’s inequality since function φ is concave, and the equality holds when z ∈ {0, 1}. More-
over, since φ is monotonically increasing and z · (v − p) is maximized when z is either 0 or 1, the
expected utility is maximized at allocation z ∈ {0, 1}.

Next we prove the bound on resemblance for risk-averse agents.

Proposition 1. A risk-averse agent is e-resemblant if her marginal value distribution satisfies MHR

condition.

Our proof relies on the following three auxiliary lemmas.

Lemma 5. For every risk-averse agent and every mechanism that is BIC and IIR, the expected

revenue is at most the expected allocated value.

Proof. Let x and p be the (randomized) allocation and payment rule of the BIC, IIR mechanism.
For an agent with risk-averse type t = (v, φ), her expected utility is E[φ(vx(v)− p(v))]. Since the
mechanism is individual rational and φ is concave,

φ (E[vx(v)− p(v)]) ≥ E[φ(vx(v)− p(v))] ≥ 0

Combining with the assumption that φ is increasing with φ(0) = 0, we obtain E[vx(v)] ≥ E[p(v)]
as desired.

Lemma 6. For any MHR distribution F and any threshold v̂ ∈ R+, the conditional distribution

F≥v̂ (conditioning on random variable v ∼ F is at least v̂) is also MHR.

Proof. It suffices the verify the monotonicity of the hazard rate function h≥v̂(·) for conditional
distribution F≥v̂. Let f , f≥v̂ be the density function of distribution F and F≥v̂, respectively. Note
that

h≥v̂(v) =
f≥v̂(v)

1− F≥v̂(v)
=

f(v)
(1−F (v̂))

1−F (v)
(1−F (v̂))

=
f(v)

1− F (v)
= h(v)
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where h(·) is the hazard rate function for distribution F , the first and last equality holds by def-
inition, and the second equality holds due to the definition of conditional distribution. Finally,
invoking the monotonicity of hazard rate function h(·) finishes the proof.

Lemma 7 (Hartline and Roughgarden, 2009). For any MHR value distribution F , it is guaranteed

that maxp∈R+ p(1− F (p)) ≥ 1
e
· Ev∈F [v].

As a sanity check, Lemma 7 suggests that for a linear agent with value drawn from MHR
distribution F , the optimal revenue maxp∈R+ p(1 − F (p)) is at least an 1

e
-fraction of the expected

full surplus Ev∈F [v].
Now we are ready to prove Proposition 1.

Proof of Proposition 1. Fix an arbitrary q̂ ∈ [0, 1]. Let F be the marginal value distribution. To
simplify the presentation, we assume F is a continuous distribution. The analysis for general
distribution can be extended straightforwardly. With slight abuse of notation, we denote v(q) ≜

F−1(1 − q) for each quantile q ∈ [0, 1]. Invoking Lemma 5, the expected revenue of the q̂ ex
ante revenue-optimal mechanism is at most Eq∼U [0,1][v(q) · 1[q ≤ q̂]] = q̂ · Eq′∼U [0,q̂][v(q

′)]. Note
that the random variable v(q′) where q′ ∼ U [0, q̂] can be interpreted as the random variable drawn
from conditional distribution F≥vq̂. Invoking Lemmas 6 and 7, it ensures that there exists a price
p ≥ v(q̂) such that its expected revenue is at least Eq∼U [0,1][v(q) · 1[q ≤ q̂]]. Since p ≥ v(q̂), the
expected allocation probability is at most q̂. Therefore, maxq≤q̂ P (q) ≥ 1

e
·R(q̂) as desired.

A.2 Necessity of Assumptions

Example A.1 (Necessity of the independence between the value and budget distributions). Fix a

large constant h. Consider a single agent with value v drawn from [1, h] with density function
h

h−1
1
v2

, and budget w = 2h− v, i.e., her value and budget are fully correlated. A mechanism which

charges the agent v−2ϵ with probability 1− ϵ
h

, or w with probability ϵ
h

for sufficient small positive

ϵ is incentive compatible and has revenue O(lnh). However, the revenue of the posted pricing is

O(1).

Example A.2. Consider a budgeted agent where the budget distribution is the discrete equal rev-

enue distribution, i.e., g(i) = 1/ϖ · i2, where ϖ = π2/6. Let the quantile function of the valuation

distribution be q(i) = 1/ln i. The optimal price posting revenue is a constant. Next consider the

pricing function τ(x) = 1
1−x

. From this pricing function, the value vi corresponding to payment i
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is vi = i2. Note that the revenue from this payment function is infinity, i.e.,

Payoff[τ ] ≥ lim
m→∞

m∑
i=1

(i · q(vi) · g(i))

=
1

2ϖ
lim

m→∞

m∑
i=1

1

i · ln i

=
1

2ϖ
lim

m→∞
ln lnm → ∞.

Therefore, the gap between price posting and the optimal mechanism is infinite.

A.3 Public Budget

We first consider a simpler setting in which agents have deterministic public budgets. This situation
can be seen as a special case of private-budget agents, where we consider a point-mass budget
distribution. As a sanity check, the independence assumption holds for public-budget agents.

Proposition 5. A public-budget agent is 1-resemblant if her marginal value distribution is regular.

The proof of Proposition 5 relies on the technique of Lagrangian relaxation on the budget
constraint developed in Alaei et al. (2013) and Feng and Hartline (2018). Combined with our
reduction framework in Theorem 3, the interpretation of Proposition 5 is that for public-budget
agents with regular marginal value distributions, the worst-case approximation ratio of pricing-
based mechanisms to the ex ante relaxation occurs when the public budgets do not bind. Moreover,
in Proposition 6, we also show that the regularity assumption is not essential for approximation.
That is, without the assumption of regular valuation distribution, a public-budget agent is still
2-resemblant.

Proof of Proposition 5. For an agent with public budget w, the q̂ ex ante optimal mechanism is the
solution of the following program,

max
(x,p)

Ev[p(v)]

s.t. (x, p) are IC, IR,
Ev[x(v)] = q̂,

p(v̄) ≤ w.

(2)

where v̄ is the highest possible value of the agent. Consider the Lagrangian relaxation of the budget
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constraint in (2),

min
λ≥0

max
(x,p)

Ev[p(v)] + λw − λp(v̄)

s.t. (x, p) are IC, IR,
Ev[x(v)] = q̂.

(3)

Let λ∗ be the optimal solution in program (3). If we fix λ = λ∗ in program (3), its inner max-
imization program can be thought as a q̂ ex ante optimal mechanism design for a linear agent
with Lagrangian objective function Ev[p(v)] − λ∗p(v̄). Thus, we define the Lagrangian price-
posting revenue curve Pλ∗(·) where Pλ∗(q) is the maximum value of the Lagrangian objective
Ev[p(v)] − λ∗p(v̄) in price-posting mechanism with per-unit price V (q). For any q ∈ (0, 1], by
the definition, Pλ∗(q) = qV (q) − λ∗V (q). For q = 0, notice that the agent with v̄ is indifferent
between purchasing or not purchasing. Thus, by the definition, Pλ∗(q) = 0 if q = 0.

Now, we consider the concave hull of the Lagrangian price-posting revenue curve Pλ∗(·) which
we denote as P̂λ∗(·). Let q† be the smallest solution of equation Pλ∗(q) = qP ′

λ∗(q). Since Pλ∗(0) ≤
0, Pλ∗(1) = 0 and Pλ∗(·) is continuous, q† always exists. Then, for any q ≤ q†, P̂λ∗(q) = q P ′

λ∗(q†).
For any q ≥ q†, we show P̂λ∗(q) = Pλ∗(q) by the following arguments. First notice that Pλ∗(q†) ≥
0, and hence q† ≥ λ∗. Consider P ′′

λ∗(q) = V ′′(q)(q−λ∗)+2V ′(q). Clearly, V ′(q) ≤ 0. If V ′′(q) ≤
0, then P ′′

λ∗(q) ≤ 0. If V ′′(q) > 0, then P ′′
λ∗(q) = V ′′(q)(q−λ∗)+2V ′(q) ≤ qV ′′(q)+2V ′(q) ≤ 0,

where qV ′′(q) + 2V ′(q) is non-positive due to the regularity of the valuation distribution.
To summarize, P̂λ∗(·), the concave hull of the Lagrangian price-posting revenue curve satisfies

P̂λ∗(q) =

{
q P ′

λ∗(q†) if q ∈ [0, q†]

Pλ∗(q) if q ∈ [q†, 1]

Therefore, use the similar ironing technique based on the revenue curves for linear agents with
irregular valuation distribution (e.g. Myerson, 1981; Bulow and Roberts, 1989; Alaei et al., 2013),
Lemma 8 (stated below) suggests that the q̂ ex ante optimal mechanism irons quantiles between
[0, q†] under q̂ ex ante constraint, which is still a posted-pricing mechanism.

Lemma 8 (Alaei et al., 2013). For incentive compatible and individual rational mechanism (x(·), p(·))
and an agent with any Lagrangian price-posting revenue curve Pλ∗(q), the expected Lagrangian

objective of the agent is upper-bounded by her expected marginal Lagrangian objective of the same

allocation rule, i.e.,

Ev[p(v)] + λ∗p(v̄) ≤ Eq

[
P̂ ′
λ∗(q) · x(V (q))

]
.

Furthermore, this inequality holds with equality if the allocation rule x(·) is constant all intervals
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Figure 3: The thin solid line is the allocation rule for the optimal ex ante mechanism. The thick
dashed line on the left side is the allocation of the decomposed mechanism with lower price, while
the thick dashed line on the right side is the allocation of the decomposed mechanism with higher
price.

of values V (q) where P̂λ∗(q) > Pλ∗(q).

For an agent with a general valuation distribution, resemblance follows from the characteri-
zation that the ex ante optimal mechanism has menu size at most 2 (Alaei et al., 2013). Thus
offering the optimal single menu pricing mechanism, i.e., posting the market clearing price, is a
2-approximation.

Lemma 9 (Alaei et al., 2013). For a single agent with public budget, the q ∈ [0, 1] ex ante optimal

mechanism has a menu with size at most two.

Proposition 6. An agent with public budget has the ironed price-posting revenue curve P̄ that is

2-resemblant to her optimal revenue curve R.

Proof. By Lemma 9, the allocation rule xq of the ex ante revenue maximization mechanism for
the single agent with public budget has a menu of size at most two. We decompose its allocation
into xL and xH as illustrated in Figure 3. Note that both allocation xL and xH are (randomized)
price-posting allocation rules, and neither allocation violates the allocation constraint q. Thus,

R(q) = Payoff[xq] = Payoff[xL] + Payoff[xH ] ≤ 2 max
q†≤q

P̄ (q†).

A.4 Private Budget

Proposition 2. A private-budget agent is 3-resemblant if her value and budget are independently

distributed, and her marginal value distribution is regular.

Fix an arbitrary ex ante constraint q, denote EX as the q ex ante revenue-optimal mechanism,
and Payoff[EX] as its revenue. We decompose EX into two mechanisms EX† and EX‡ according
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to the market clearing price pq. Intuitively, the per-unit prices in EX† for all types are at most
the market clearing price and the per-unit prices in EX‡ for all types are larger than the market
clearing price. The details of the decomposition are specified in Appendix B.1, and we will bound
the revenue from those two mechanisms separately.

Lemma 10. For a single agent with random-public-budget utility, independently distributed value

and budget, and any ex ante constraint q; the revenue of EX† is at most the revenue from posting

the market clearing price, i.e., P (q) ≥ Payoff
[
EX†].

Proof. The ex ante allocation of EX† is at most the ex ante allocation of EX, i.e., q. Combining
with the fact that the per-unit prices in EX† for all types are weakly lower than the market clearing
price, its revenue is at most the revenue of posting the market clearing price.

For the revenue bound of EX‡, we consider two different cases: (1) the market clearing price is
larger than the monopoly reserve; and (2) the market clearing price is smaller than the monopoly
reserve. The proofs of Lemma 11 and 12 are provided at the end of this section.

Lemma 11. For a single private-budget agent with independently distributed value and budget

and regular value distribution, if the market clearing price pq = P (q)/q is larger than the monopoly

reserve, i.e., pq = P (q)/q ≥ m∗, the revenue of posting the market clearing price is at least the

revenue of EX‡, i.e., P (q) ≥ Payoff
[
EX‡].

Intuitively, Lemma 11 is analyzed separately for each realized budget under two cases. If the
budget is lower than the market clearing price, then the budget binds and the revenues are the same
in both cases. If the budget is higher than the market clearing price, then the budget does not
bind, and the revenue comparison is analogous to the setting without budget constraints. Since the
revenue curve is concave and the market clearing price is larger than the monopoly reserve, higher
price in EX‡ leads to lower expected revenue.

Lemma 12. For a single private-budget agent with independently distributed value and budget and

regular value distribution, if the market clearing price pq = P (q)/q is smaller than the monopoly

reserve, there exists q† ≤ q such that the market clearing revenue from q† is a 2-approximation to

the revenue from EX‡, i.e., 2P (q†) ≥ Payoff
[
EX‡].

In fact, we show there is a distribution over interim feasible random pricing that attains at least
half of the optimal ex ante revenue. Of course, the optimal deterministic price that is at least pq is
only better than the random price, and hence the lemma is shown. Specifically, consider posting
a random price p = max{pq,p0} with p0 drawn identically to the agents value distribution. As
shown in Figure 4, the revenue from the random pricing p corresponds to the dark grey area, while
the optimal ex ante revenue corresponds to the light grey area. By the concavity of the revenue
curve, the geometry of the figure directly implies the 2-approximation on expected revenue.
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Figure 4: In the geometric proof of Lemma 12, the upper bound on the expected revenue of EX‡

(Payoffw[p] and Payoffw[OPTw] on the left and right, respectively) is the area of the light gray
striped rectangle and the revenue from posting random price p is the area of the dark gray region.
By geometry, the latter is at least half of the former. The black curve is the price-posting revenue
curve with no budget constraint PL. The figure on the left depicts the small-budget case (i.e.,
w < pq), and the figure on the right depicts the large-budget case (i.e., w ≥ pq).

Proof of Proposition 2. Fix any ex ante constraint q. If the market clearing price pq = P (q)/q

is at least the monopoly reserve, Lemma 10 and Lemma 11 imply that Payoff
[
EX†] ≤ P (q),

and Payoff
[
EX‡] ≤ P (q), thus, P (q) is a 2-approximation to Payoff

[
EX†] + Payoff

[
EX†] =

Payoff[EX], i.e., R(q). If the market clearing price pq is smaller than the monopoly reserve, let
q† = argmaxq′≤q P (q′), Lemma 10 and Lemma 12 imply that Payoff

[
EX†] ≤ P (q) ≤ P (q†), and

Payoff
[
EX‡] ≤ 2P (q†), thus, P (q†) is a 3-approximation to R(q). Thus, the agent is 3-resemblant

for ex ante optimization.

Proof of Lemma 11. In both EX‡ and the mechanism that posts the market clearing price, the types
with value lower than the market clearing price pq will purchase nothing, so we only consider the
types with value at least pq in this proof. Each budget level is considered separately.

For types with budget w ≤ pq, by posting the market clearing price pq, those types always pay
their budgets w, which is at least the revenue from those types in EX‡.

For types with budget w > pq, by posting the market clearing price pq, those types always pay
pq. Since the budget constraints do not bind for these types, it is helpful to consider the price-
posting revenue curve without budget, which we denote by PL. The regularity of the valuation
distribution guarantees that PL is concave. The concavity of PL implies that higher prices above
m∗ extracts lower revenue than pq. Since the per-unit prices in EX‡ for all types are at least pq, the
concavity of PL guarantees that the expected revenue of posting pq for types with budget larger
than p is at least the expected revenue for those types in EX‡. Combining these bounds above, we
have P (q) ≥ Payoff

[
EX‡].

Proof of Lemma 12. Note that any price that is at least pq is feasible for the ex ante constraint q.
We consider posting a random price p = max{pq,p0} with p0 drawn identically to the agents
value distribution. Fixing the budget of the agent w, consider the following geometric argument
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(cf. Dhangwatnotai et al., 2015). For both sides of Figure 4, the area of the light gray stripped
rectangle upper bounds the revenue of EX‡ and the area of the dark gray region is the expected
revenue from posting random price p. Consequently, concavity of the price-posting revenue curve
with no budget constraint PL (by regularity of the value distribution) implies that a triangle with
half the area of the light gray rectangle is contained within the dark gray region and, thus, the
random price is a 2-approximation. As the random price does not depend on the budget w, the
same bound holds when w is random. Of course, the optimal deterministic price that is at least pq

is only better than the random price and the lemma is shown. The remainder of this proof verifies
that the geometry of the regions described above is correct.

The left side of Figure 4 depicts the fixed budgets w that are at most pq. The area of the light
gray striped rectangle upper bounds the revenue of EX‡ as follows. Let Payoffw[p] be the expected
revenue from posting price p to types with budget w. Under both EX‡ and the market clearing
price pq, types with value below the market clearing price pay zero. For the remaining types, in
EX‡ they pay at most their budget and in market clearing they pay exactly their budget. Thus,
Payoffw

[
EX‡] ≤ Payoffw[pq] = w (1 − F (pq)) where, recall, 1 − F (pq) is the probability the

agent’s value is at least the market clearing price pq. Of course, w (1 − F (pq)) is the height and
area (its width is 1) of the light gray striped region on the left side of Figure 4.

The right side of Figure 4 depicts the fixed budgets w that are at least pq. The area of the light
gray striped rectangle upper bounds the revenue of EX‡ as follows. Let OPTw be the optimal
mechanism to types with budget w without ex ante constraint and Payoffw[OPTw] be its expected
revenue from these types. Clearly, Payoffw

[
EX‡] ≤ Payoffw[OPTw] as the latter optimizes with

relaxed constraints of the former. Laffont and Robert (1996) show that OPTw posts the minimum
between budget w and the monopoly reserve m∗ when the agent has public budget and regular
valuation. As the budget does not bind for this price, its revenue is given by the price-posting
revenue curve with no budget constraint, i.e., Payoffw[OPTw] = PL(1 − F (min{w,m∗})). Of
course, this revenue is the height and area (its width is 1) of the light gray striped region on the
right side of Figure 4.

Next, we will show that the revenue of posting the random price p is the grey shaded areas
illustrated in Figure 4 (in both cases). A random price from the value distribution, i.e., p0, corre-
sponds to a uniform random quantile constraint, i.e., drawing uniformly from the horizontal axis.
Since we truncate the lower end of the price distribution at the market clearing price pq, the revenue
from quantiles greater than q equals the revenue from the market clearing price. For any fixed w,
when p ∈ [pq, w], the budget does not bind and the revenue of posting price p is PL(q) where PL

is the price-posting revenue curve without budget; and when p > w, the revenue of posting price p
is wq. Thus, the revenue from a random price is given by the integral of the area under the curve
defined by qw when p ≥ w, by PL(q) when p ∈ [w, pq] and this interval exists, and by min(w, pq)
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when p = pq, i.e., when p0 ≤ pq. This area is the dark gray region.
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ONLINE APPENDIX FOR ONLINE PUBLICATION

B Details for Various Extensions

B.1 Welfare Maximization

Proposition 3. An agent with a private budget has the price-posting welfare curve P that is 2-

resemblant to her optimal welfare curve R if the budget is drawn independently from the valuation.

The proof of Proposition 3 utilizes the price decomposition technique from Abrams (2006) and
extends it for welfare analysis.

Fix an arbitrary ex ante constraint q, denote EX as the q ex ante welfare-optimal mechanism,
and Payoff[EX] as its welfare. We want to decompose EX into two mechanisms EX† and EX‡

according to the market clearing price pq and bound the welfare from those two mechanisms sepa-
rately. The decomposed mechanism may violate the incentive constraint for budgets, and we refer
to this setting as the random-public-budget utility model. Note that the market clearing price is
the same in both the private budget model and the random-public-budget utility model. Intuitively,
mechanism EX† contains per-unit prices at most the market clearing price, while mechanism EX‡

contains per-unit prices at least the market clearing price. Both mechanisms EX† and EX‡ satisfy
the ex ante constraint q, and the sum of their welfare upper bounds the original ex ante mechanism
EX, i.e., Payoff[EX] ≤ Payoff

[
EX†]+ Payoff

[
EX‡].

To construct EX† and EX‡ that satisfy the properties above, we first introduce a characteriza-
tion of all incentive compatible mechanisms for a single agent with private-budget utility, and her
behavior in the mechanisms.

Definition B.1. An allocation-payment function τ : [0, 1] → R+ is a mapping from the allocation

x to the payment p.

Lemma 13. For a single agent with private-budget utility, in any incentive compatible mecha-

nism, for all types with any fixed budget, the mechanism provides a convex and non-decreasing

allocation-payment function, and subject to this allocation-payment function, each type will pur-

chase as much as she wants until the budget constraint binds, or the unit-demand constraint binds,

or the value binds (i.e., her marginal utility becomes zero).

Proof. Myerson (1981) show that any mechanisms (x, p) for a single linear agent is incentive com-
patible (the agent does not prefer to misreport her value) if and only if a) x(v) is non-decreasing; b)
p(v) = vx(v)−

∫ v

0
x(t)dt. Thus, given any non-decreasing allocation x, the payment p is uniquely

pined down by the incentive constraints.
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Comparing with the linear utility, the incentive compatibility in the private-budget utility guar-
antees that the agent does not prefer to misreport either her value or budget. If we relax the incen-
tive constraints such that she is only allowed to misreport her value, Myerson result already shows
that for any fixed budget level w, the allocation x(v, w) is non-decreasing in v and the payment
p(v, w) = vx(v, w)−

∫ v

0
x(t, w)dt is uniquely pined down. We define the allocation-payment func-

tion τw(x̂) = max{p(v, w) + v · (x̂ − x(v, w)) : x(v, w) ≤ x̂} if x̂ ≤ x(v̄, w); and ∞ otherwise.
Given the characterization of allocation and payment above, this allocation-payment function is
well-defined, non-decreasing and convex.

This characterization is shown by relaxing the agent’s incentives for misreporting the budget.
Unlike Myerson’s result which give a sufficient and necessary condition for incentive compatible
mechanisms for linear agents, Lemma 13 only characterizes a necessary condition for private-
budget utility.22 This condition is already enough for our arguments.

Now we give the construction of EX† and EX‡ by constructing their allocation-payment func-
tions. The decomposition is illustrated in Figure 5. For agent with budget w, let τw be the
allocation-payment function in mechanism EX, and x∗

w be the utility maximization allocation for a
linear agent with value equal to the market clearing price pq, i.e., x∗

w = argmax{x : τ ′w(x) ≤ pq}.
For agents with budget w, we define the allocation-payment functions τ †w and τ ‡w for EX† and EX‡

respectively below,

τ †w(x) =

{
τw(x) if x ≤ x∗

w,

∞ otherwise;
τ ‡w(x) =

{
τw(x

∗
w + x)− τw(x

∗
w) if x ≤ 1− x∗

w,

∞ otherwise.

By construction, for each type of the agent, the allocation from EX is upper bounded by the sum of
the allocation from EX† and EX‡, which implies that the welfare from EX is upper bounded by the
sum of the welfare from EX† and EX‡, and the requirements for the decomposition are satisfied.

As sketched above, we separately bound the welfare in EX† and EX‡ by the welfare from
posting the market clearing price.

Lemma 14. For a single agent with random-public-budget utility, independently distributed value

and budget, and any ex ante constraint q, the welfare from posting the market clearing price pq is

at least the welfare from EX†, i.e., P (q) ≥ Payoff
[
EX†].

Proof. Consider agent with type (v, w) and agent with type (v′, w), where both value v and v′ are
higher than the market clearing price pq. Notice that the allocations for these two types are the
same in EX† and in market clearing, since the per-unit price in both mechanisms is at most pq

which makes the mechanisms unable to distinguish these two types.
22This characterization is only necessary because it relaxes the incentive constraints for misreporting the private

budget.
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Figure 5: Depicted are allocation-payment function decomposition. The black lines in both figures
are the allocation-payment function τw in ex ante optimal mechanism EX; the gray dashed lines
are the allocation-payment function τ †w and τ ‡w in EX† and EX‡, respectively.

Let x† be the allocation rule in EX† and let xq be the allocation rule in posting the market
clearing price pq. For any value v ≥ pq, the expected allocation for types with value v is lower
in EX† than in market clearing, i.e., Ew

[
x†(v, w)

]
≤ Ew[x

q(v, w)]. Otherwise suppose the types
with value v∗ has strictly higher allocation in EX† for some value v∗ ≥ pq, i.e, Ew

[
x†(v∗, w)

]
>

Ew[x
q(v∗, w)]. By the fact stated in previous paragraph, we have that for any budget w and any

value v, v∗ ≥ pq, xq(v, w) = xq(v∗, w), x†(v, w) = x†(v∗, w), and the expected allocation in EX†

is

Ev,w

[
x†(v, w)

]
≥ Pr[v ≥ pq] · Ev,w

[
x†(v, w) | v ≥ pq

]
= Pr[v ≥ pq] · Ew

[
x†(v∗, w)

]
> Pr[v ≥ pq] · Ew[x

q(v∗, w)]

= Pr[v ≥ pq] · Ev,w[x
q(v, w) | v ≥ pq] = q,

where the qualities hold due to the independence between the value and the budget. Note that this
implies that EX† violates the ex ante constraint q, a contradiction. Further, for any type with value
v ≥ pq, Ew

[
x†(v, w)

]
≤ Ew[x

q(v, w)] implies that the allocation in market clearing “first order
stochastic dominates” the allocation in EX†, i.e., for any threshold v†, the expected allocation from
all types with value v ≥ v† in market clearing is at least the expected allocation from those types
in EX†. Taking expectation over the valuation and the budget, the expected welfare from market
clearing is at least the welfare from EX†, i.e., P (q) ≥ Payoff

[
EX†].

Lemma 15. For a single agent with random-public-budget utility, independently distributed value

and budget, and any ex ante constraint q; the welfare from market clearing is at least the welfare

from EX‡, i.e., P (q) ≥ Payoff
[
EX‡].

Proof. In both EX‡ and market clearing, types with value lower than pq will purchase nothing, so
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we only consider the types with value at least pq in this proof. Consider any type (v, w) where
v ≥ pq, its allocation in market clearing is at least its allocation in EX‡, because the per-unit price
in EX‡ is higher. Thus, the welfare from market clearing is at least the welfare from EX‡, i.e.,
P (q) ≥ Payoff

[
EX‡].

Intuitively, in EX†, we are able to show that for any value higher than pq, the expected allocation
of the agent in EX† is weakly lower compared to market clearing in order for the ex ante feasibility
constraint to be satisfied. Thus allocation given the market clearing price “first order stochastic
dominates” the allocation in EX†, and hence expected welfare in EX† is lower compared to posting
market clearing price pq.

In EX‡, types with value lower than pq will purchase nothing, and types with value higher than
pq will less compared to market clearing price as the per-unit price in EX‡ is higher. Thus the
expected welfare in EX‡ is also lower compared to posting market clearing price pq.

Proof of Proposition 3. Combining Lemma 14 and 15, for any quantile q, we have

R(q) = Payoff[EX] ≤ Payoff
[
EX†]+ Payoff

[
EX‡] ≤ 2P (q) ≤ max

q′≤q
2P̄ (q′).

B.2 Convex Combination of Two Payoff Functions

Lemma 3. If an agent is ζ-resemblant for objective 1 and ζ ′-resemblant for objective 2 with non-

negative values, then this agent is (ζ + ζ ′)-resemblant for any convex combination of the two

objectives.

Proof. For any quantile q, let EX be the q ex ante optimal mechanism for the convex combination
of the objectives. Let Payoff1[EX] be the contribution of objective 1 given mechanism EX and
Payoff2[EX] be the contribution of objective 2 given mechanism EX. Let Payoff[EX] = α ·
Payoff1[EX] + (1 − α) · Payoff2[EX] be the convex combination of the contributions given α ∈
(0, 1). Let q1 = argmaxq′≤q P̄1(q

′) and q2 = argmaxq′≤q P̄2(q
′), where P̄1 and P̄2 are the concave

hull of price posting payoff curves for objectives 1 and 2 respectively. Let P̄ be the concave hull
of price posting payoff curves for the convex combination of objectives 1 and 2. Then, we have

Payoff[EX] = α · Payoff1[EX] + (1− α) · Payoff2[EX]

≤αζ · P̄1(q1) + (1− α)ζ ′ · P̄2(q2) ≤ ζ · P̄ (q1) + ζ ′ · P̄ (q2) ≤ (ζ + ζ ′)max
q′≤q

P̄ (q′).

Thus this agent is (ζ + ζ ′)-resemblant for the convex combination of the two objectives.
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B.3 Reduction Framework for Non-expected Utilities

We first formally introduce the model of non-expected utilities. In Appendix B.3.1, we present
the reduction framework that converts sequential posted pricing mechanisms for linear agents to
non-linear agents without expected utility representations, and approximately preserves its payoff
approximation guarantee. We illustrate the application of our framework by showing that agents
with endogenous valuations are 1-resemblant for both welfare and revenue maximization in Ap-
pendix B.3.2.

Non-expected Utilities. For any agent with type t, her utility for a distribution π over allocations
and payments is u(t, π). Given a per-unit price p, letting πp(z) be the distribution over allocations
and payments given demand z, the optimal demand of the agent is

d(t, p) ∈ max
z∈[0,1]

u(t, πp(z)).

We assume that the maximum demand is always attainable. Moreover, we assume the demand
correspondence d(t, p) is upper hemi-continuous and has convex image for any type t. Therefore,
the price-posting payoff curves P (q), ironed price-posting payoff curve P̄ , and optimal payoff
curves R(q) in Section 2 can be analogously defined for agents with non-expected utilities.23 We
also say such an agent is ζ-resemblant if her ironed price-posting payoff curve P̄ is ζ-resemblant

to her optimal payoff curve R.

B.3.1 Reduction Framework for Sequential Posted Pricing

We present a reduction framework that converts sequential posted pricing mechanisms for linear
agents to non-linear agents without expected utility representations, and approximately preserves
its payoff approximation guarantee.

Theorem 4. Fix any set of non-linear agents with price-posting payoff curves {Pi}i∈N that are

ζ-resemblant to their optimal payoff curves {Ri}i∈N . If there exists a sequential posted pricing

mechanism that is a γ-approximation to the ex ante relaxation for linear agents analog with price-

posting payoff curves {Pi}i∈N , i.e., SPP({Pi}i∈N) ≥ 1/γ · EAR({P̄i}i∈N), then this mechanism

is also a γζ-approximation to the ex ante relaxation for non-linear agents, which implies that

SPP({Pi}i∈N) ≥ 1/γ ζ · EAR({Ri}i∈N).

Proof. Let {q†i }i∈N be the profile of optimal ex ante quantiles for optimal payoff curves {Ri}i∈N .
Since the ironed price-posting payoff curves {P̄i}i∈N are ζ-resemblant to the optimal payoff curves

23For agents with non-expected utilities, the ironed price-posting payoff curve can still be attained by randomizing
over at most two per-unit prices, and letting the agent know about the realizations of the per-unit prices before making
her demand choices.
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{Ri}i∈N , there exists a sequence of quantiles {q‡i }i∈N such that for any agent i, q‡i ≤ q†i and
P̄ (q‡i ) ≥ 1/ζ · R(q†i ). Note that since

∑
i q

‡
i ≤

∑
i q

†
i ≤ 1, {q‡i }i∈N is also feasible for ex ante

relaxation. Therefore,

EAR({Ri}i∈N) =
∑
i∈N

Ri(q
†
i ) ≤ ζ ·

∑
i∈N

P̄i(q
‡
i ) ≤ ζ · EAR({P̄i}i∈N).

Since the expected payoff of the sequential posted pricing mechanism only depends on the price
posting payoff curves, not on the agents’ utility models, we have

SPP({Pi}i∈N) ≥ 1/γ · EAR({P̄i}i∈N) ≥ 1/γ ζ · EAR({Ri}i∈N),

and Theorem 4 holds.

B.3.2 Endogenous Valuation

Each agent i ∈ N can make costly investments before the auction by taking action ai ∈ R. For
agent i with private type ti, the cost for action ai is ci(ai) and the value for the item is vi(ai, ti) =
ai+ti. Given allocation x and payment p, agent i taking action ai has utility x·vi(ai, ti)−p−ci(ai).
This is the model presented in Gershkov et al. (2021).24 Note that in this endogenous utility model,
the agent can be equivalently modeled as one with convex preference over allocations, which does
not satisfy the expected utility characterization.

For agents with endogenous valuation, in order to apply our reduction framework, it is impor-
tant to specify the timeline for agents to exert costly efforts as it affects the equilibrium payoff of
any given mechanism. In this paper, we assume that the agent can delay the investment decision
until she sends a message to the seller. In the case of sequential posted pricing mechanisms, for
each agent i, the agent makes the investment decisions after she sees the realized price offered by
the seller. Note that the price is infinite if the item is sold to previous agents and agent i will not
make any investment given this price.

Under this timeline of the model, we can show that agents with endogenous valuation are 1-
resemblant for both welfare maximization and revenue maximization under regularity conditions.
This implies that the worst-case approximation guarantee of sequential posted pricing for agents
with endogeous valuations is the same as linear agents when compared to the ex ante relaxation
for the objective of both welfare and revenue maximization.

24Gershkov et al. (2021) characterized the single-agent revenue optimal mechanism for slightly more general classes
of valuation functions. To simplify the presentation, in this paper, we only illustrate the proof for this special form of
valuation function, and the same technique can be easily extended to broader settings.
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Lemma 16 (Fan and Lorentz, 1954; Gershkov et al., 2021). For any function L : R2 → R such

that L(x, q) is supermodular in (x, q) and convex in x, for any pair of allocations x ≺ x̂,25 we

have ∫ 1

0

L(x(q), q) dq ≤
∫ 1

0

L(x̂(q), q) dq.

Proposition 7. An agent with endogenous valuation has the price-posting welfare curve P that

equals (i.e. 1-resemblant) her optimal welfare curve R.

Proof. For an agent with endogenous valuation, her type t is mapped to quantile q according to
type distribution F̄ in the same way as a linear agent, i.e., the quantile is in essence one minus
the inverse of the cumulative distribution function. Let L(x, q) be the welfare of the agent with
type corresponding to quantile q when she makes optimal investment decision given allocation
x. By Gershkov et al. (2021), the function L(x, q) is supermodular in (x, q) and convex in x.
For any quantile constraint q̂, let x̂ be the allocation such that x̂(q) = 1 for any q ≤ q̂ and
x̂(q) = 0 otherwise. Any incentive compatible mechanism with allocation x that sells the item
with probability q̂ satisfies x ≺ x̂. By Lemma 16, the optimal mechanism that is q̂ feasible has
allocation rule x̂, which is posting a deterministic price to the agent. Thus this agent has price-
posting welfare curve P that equals (i.e. 1-resemblant) her optimal welfare curve R.

Proposition 8. An agent with endogenous valuation and regular type distribution has the ironed

price-posting revenue curve P̄ that equals (i.e. 1-resemblant) her optimal revenue curve R.

Proof. Let L(x, q) be the virtual value of the agent given allocation x and type with quantile q.
By Gershkov et al. (2021), the function L(x, q) is supermodular in (x, q) and convex in x if the
type distribution is regular. Similar to Proposition 7, for any quantile q̂, the optimal mechanism
for maximizing the expected virtual value that sells the item with probability at most q̂ is posted
pricing. Since the expected revenue equals the expected virtual value, this agent has price-posting
revenue curve P̄ that equals (i.e. 1-resemblant) her optimal revenue curve R.

B.4 Anonymous Pricing

Example B.2. Consider the single-item setting with two budget agents. Let v be a sufficiently

large number. Agent 1 has value v and no budget constraint while agent 2 has value v2 and budget

1. The welfare optimal mechanism allocates the item to agent 2, with welfare v2. However, if the

anonymous price is at most v, then agent 1 will buy the whole item and if the anonymous price is

25x ≺ x̂ means that for any q̂ ∈ [0, 1],
∫ q̂

0
x(q) dq ≤

∫ q̂

0
x̂(q) dq and

∫ 1

0
x(q) dq =

∫ 1

0
x̂(q) dq.
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larger than v, the item is sold with probability at most 1
v
. Thus anonymous pricing can guarantee

welfare at most v, with approximation factor at least v, which is unbounded.

Proposition 4. Fix any set of (non-linear) agents with price-posting revenue curves {Pi}i∈N that

are ζ-resemblant to their optimal revenue curves {Ri}i∈N . If the price-posting revenue curves are

concave, then anonymous pricing is a ζe-approximation to the ex ante relaxation on the optimal

revenue curves, i.e., AP({Pi}i∈N) ≥ 1/ζe · EAR({Ri}i∈N).

Proof. Let {qi}i∈N be the optimal ex ante relaxation for ex ante revenue curves {Ri}i∈N , and let q†i
be the quantile assumed to exist by ζ-resemblance such that q†i ≤ qi and P̄i(q

†
i ) ≥ 1

ζ
Ri(qi) for each

i. Since the price-posting revenue curves are concave, we have {Pi}i∈N = {P̄i}i∈N , and

EAR({Pi}i∈N) = EAR({P̄i}i∈N) ≥
∑

i
P̄i(q

†
i ) ≥

1

ζ

∑
i
R(qi) =

1

ζ
EAR({Ri}i∈N).

By Alaei et al. (2019), e · AP({Pi}i∈N) ≥ EAR({Pi}i∈N) if the price-posting revenue curves
{Pi}i∈N are concave. Combining the inequalities, we have

ζe · AP({Pi}i∈N) ≥ EAR({Ri}i∈N).

B.5 Oblivious Posted Pricing

For oblivious posted pricing mechanisms (e.g. Chawla et al., 2010), we show how to apply resem-
blant property between the ironed price-posting payoff curve and optimal payoff curve to obtain
approximation results for agents with general utility. Similar to sequential posted pricing, we will
define the oblivious posted price in quantile space.

Definition B.3. An oblivious posted pricing mechanism is ({qi}i∈N) where the adversary chooses

an ordering {oi}i∈N of the agents, and {qi}i∈N denotes the quantile corresponding to the per-unit

prices to be offered to agents at the time they are considered according to the order {oi}i∈N if the

item is not sold to previous agents. Note that quantiles {qi}i∈N can be dynamic and depends on

both the order and realization of the past agents.

Given the definition of the oblivious quantile pricing mechanism, we denote the payoff of the
oblivious quantile pricing mechanism ({qi}i∈N) for agents with a collection of price-posting pay-
off curves {Pi}i∈N by OPP({Pi}i∈N , {qi}i∈N), and the optimal payoff for the oblivious quantile
pricing mechanism is

OPP({Pi}i∈N) = max
{qi}i∈N

OPP({Pi}i∈N , {qi}i∈N).
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Similar to Theorem 4, we have the following reduction framework for oblivious posted pricing
for non-linear agents. The proof is identical to Theorem 4, hence omitted here.

Theorem 5. Fix any set of (non-linear) agents with price-posting payoff curves {Pi}i∈N that are

ζ-resemblant to their optimal payoff curves {Ri}i∈N . If there exists an oblivious posted pricing

mechanism ({qi}i∈N) that is a γ-approximation to the ex ante relaxation for linear agents analog

with price-posting payoff curves {Pi}i∈N , i.e., OPP({Pi}i∈N , {qi}i∈N) ≥ 1/γ · EAR({P̄i}i∈N),
then this mechanism is also a γζ-approximation to the ex ante relaxation for non-linear agents,

i.e., OPP({Pi}i∈N , {qi}i∈N) ≥ 1/γ ζ · EAR({Ri}i∈N).

For the single item setting, there exists an oblivious posted pricing mechanism that is a 2-
approximation to the ex ante relaxation for linear agents (Feldman et al., 2016). In addition, if
the price-posting payoff curves are the same for all gents, the approximation ratio is improved to
1/(1− 1/

√
2π) (Yan, 2011).

B.6 General Feasibility Constraint

Our results can be generalized to multi-unit auctions with downward closed feasibility constraints.
Let X be the set of feasible allocation profiles. The set X is downward closed if for any {xi}i∈N ∈
X , we have {x′

i}i∈N ∈ X if x′
i ≤ xi for any i ∈ N . We denote the set of ex ante feasible quantiles

with respect to feasibility constraint X by EAF(X ). The optimal ex ante payoff given a specific
collection of payoff curves {Ri}i∈N and feasibility constraint X is

EAR({Ri}i∈N ,X ) = max
{qi}i∈N⊆EAF(X )

∑
i∈N

Ri(qi).

Given feasibility constraint X , the sequential posted pricing mechanism ({oi}i∈N , {qi}i∈N) offers
each agent i the price corresponding to quantile qi according to order {oi}i∈N if it is feasible to
serve agent i given the allocation of previous agents. The payoff achieved by the sequential posted
pricing mechanism ({oi}i∈N , {qi}i∈N) for agents with a specific collection of price-posting payoff
curves {Pi}i∈N given feasibility constraint X is denoted by SPP({Pi}i∈N , {oi}i∈N , {qi}i∈N ,X ).26

It is easy to verify that the reduction framework for (sequential) posted pricing mechanisms
(Theorem 4) and the reduction framework for pricing-based mechanism (Theorem 3) directly ap-
ply when there is a downward closed feasibility constraint X . In addition, it is shown in the litera-
ture that for general class of feasibility constraints, posted pricing mechanisms are approximately
optimal for linear agents. We formally state the reduction result for sequential posted pricing in
the following theorem.

26Here we only formally discuss the extension for sequential posted pricing mechanisms. The generalizations for
other posted pricing mechanisms hold similarly.
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Theorem 6. Given feasibility constraint X , for linear agents with the price-posting payoff

curves {Pi}i∈N , there exists a sequential posted pricing mechanism ({oi}i∈N , {qi}i∈N) that is

a γ-approximation to the ex ante relaxation, i.e., SPP({Pi}i∈N , {oi}i∈N , {qi}i∈N ,X ) ≥ 1/γ ·
EAR({P̄i}i∈N ,X ) where γ = e/(e− 1) if X is a matroid (Yan, 2011), γ = 1/(1− 1/

√
2π) if X is a

knapsack (Balkanski and Hartline, 2016), and γ = 1/(1− 1/
√
2πk) for k-unit auctions (Yan, 2011).

B.7 Examples for Approximation Guarantees

In this section, we provide the details for numerical evaluations. Recall that we will focus on selling
m units of identical items to n > m i.i.d. agents with the objective of revenue maximization.

B.7.1 Risk-averse Utility

Recall that we focus on a simple example where each agent has constant absolute risk aversion
(CARA) utility function, i.e.,

φ(z) =
1

a
(1− exp (−az))

for risk parameter a > 0, where exp(·) is the exponential function. We assume that the risk averse
agent has private value drawn from uniform distribution in [0, 1].

By Claim 1, a risk-averse agent behave the same as a linear agent when facing a per-unit price
and hence the risk attitude of the agent does not matter under posted pricing. Therefore, we can
apply the same sequential posted pricing mechanism for risk-averse agents as the one for linear
agents, and achieve the same expected revenue as if all agents have linear utilities. In particular,
we will numerically evaluate the revenue of sequential posted pricing mechanism where the per-
unit price pi of each agent is set such that the probability the price is accepted equals min

{
m
n
, 1
2

}
,

where 1
2

is the probability the item is sold in the single-agent problem when the seller posts a
monopoly price of 1

2
to maximize the expected revenue for uniform distributions. Thus, the per-

unit price pi equals 1 − min
{

m
n
, 1
2

}
for each agent i. The revenue guarantees of this particular

sequential posted pricing are illustrated in Figure 2a.

B.7.2 Private-budget Utility

Recall that we consider budget constrained agents whose value and budget are drawn indepen-
dently from uniform distribution in [0, 1]. We numerically evaluate the revenue of sequential posted
pricing mechanism where the per-unit price of each agent is set such that the probability each agent
wins a unit of item is min{m

n
, 1+

√
3

6
}, where 1+

√
3

6
is the probability an item is sold in the single-

agent problem when the seller posts a per-unit price to maximize the expected revenue. Therefore,
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the per-unit price for each budgeted agent i in this example is

pi =
1

2

(
3−

√
9− 8(1−min{m

n
, 1+

√
3

6
})
)
.

The revenue guarantees of this particular sequential posted pricing are illustrated in Figure 2b.

C Tie-breaking Rules

In Algorithm 1, it is possible that based on the tie-breaking rule of the pricing-based mechanism,
agent i may not receive the item if her quantile equals the threshold quantile. In this case, the
probability of agent i with type ti for winning an item when others have quantiles q−i can be
strictly smaller than d(ti, p

q̂i). Denote this probability as zi(ti, q−i). In this case, the payment of
agent i with type ti in mechanism M is pq̂i · zi(ti, q−i) regardless of the allocation.

Note that based on our construction, the marginal quantile for each agent is drawn from the
uniform distribution in [0, 1]. Therefore, ties occur with measure zero and hence the expected
payoff of mechanism M for non-linear agents is not affected.

Now it is sufficient to show that both DSIC and IIR properties hold in mechanism M for
non-linear agents hold even for the measure zero event that

zi(ti, q−i) < d(ti, p
q̂i).

Note that for each agent i with type ti, her quantile is drawn from cumulative distribution function
H ti

i . Therefore, such event happens only if distribution H ti
i has a point mass at threshold quantile

q̂i. Moreover,

zi(ti, q−i) = lim
q→q̂−i

d(ti, p
q).

Since the demand correspondence is upper hemi-continuous (Assumption 1), lottery zi(ti, q−i)

is also a best response of agent i with type ti given market clearing price pq̂i . Therefore, the
constructed mechanism is also DSIC and IIR for the measure zero event.
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