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Abstract

We study a principal-agent framework where the principal designs a mech-

anism which consists of an allocation rule and an information structure for

learning payoff relevant features. Crucially, the principal cannot commit on

how acquired information is used in the mechanism. We show that in binary

feature environments or those with independent private values and quasilinear

transfers, there exists an optimal mechanism with full revealing information

structures. We provide sufficient conditions where mechanisms with full reveal-

ing information structures are optimal or strictly suboptimal in environments

like interdependent values or correlated types. In general, optimal mechanisms

may require information structures with supports strictly larger than the fea-

ture set, contrasting results in standard information design.
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1 Introduction

Information plays a crucial role in the operations of firms, organizations, and governments.

Moreover, modern technology has revolutionized the ways in which information is gathered

and processed, enabling many organizations to collect vast amounts of data from diverse

sources at extremely high speeds and to make use of such information in various applications.

For instance, auto insurance companies, such as Progressive, adopt programs like Snapshot

to monitor the real-time driving behavior of policyholders and provide personalized in-

surance rates based on usage;1 retailers such as Walmart collaborate with manufacturers

using the Collaborative Planning, Forecasting, and Replenishment (CPFR) system to share

demand forecasts for improved inventory control (Seifert, 2003); online platforms such as

Google AdWords adopt sophisticated learning algorithms to forecast the clicks bidders can

expect at a given bid, and provide these forecasts as a bidding landscape to guide bidders

in AdWords auctions (Deng et al., 2021); and manufacturers such as Ford use automated

vision systems for gathering information on the defects in product lines to improve the

overall qualities of their products.2

The traditional wisdom is that more information should always help for making better

decisions. However, when the information is used for contracting with strategic agents,

due to privacy concerns, regulation policies on data protection, or simply the inability

to credibly disclose information, the principal cannot commit on how they will use their

private information when establishing the contracts. This raises the additional concern

of trusting the principal to act in a way that is beneficial for the agents, and hence the

contracts designed by the principal must also be incentive compatible for themselves. In

this paper, we study the problem where the principal can jointly design the mechanisms and

the information structures for learning payoff relevant features. We show that the principal

may strategically neglect useful information to avoid the loss from satisfying the incentive

constraints.

A leading example of our model is forecast sharing in supply chains. In this appli-

cation, retailers such as Walmart and Target control both the terms of the contracts for

replenishment from manufacturers and the technologies used for demand forecasting.3 The

ex-ante unknown payoff relevant feature in this example is the future market demands for

various products and the technologies for making the demand forecasts are publicly ob-

1See https://www.progressive.com/auto/discounts/snapshot/.
2See https://www.vision-systems.com/factory/article/16743188/automated-vision-system
-creates-3d-model-of-ford-cars-to-detect-dirt-in-paint-jobs

3Similarly, large manufacturing companies such as Coca-Cola can use the CPFR system to share
demand forecasts with upstream suppliers for more efficient production.
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served by both the retailer and the manufacturer. For instance, IBM provides solutions for

implementing the CPFR system, in which transparency in demand forecasting technologies

can be ensured among all parties. This solution has been adopted by various companies.

Furthermore, recent advancements in blockchain technology have further enhanced trans-

parency, which IBM has adapted to provide services for companies such as Walmart and

Pfizer.4 Transparency in forecasting technologies ensures that all parties have a shared un-

derstanding of the best possible predictions the retailer can make based on its proprietary

data, and a better prediction technology corresponds to the retailer’s choice of acquiring

more precise information.5 Moreover, as noted by (Deimen and Szalay, 2019), who consider

applications where the transparency of information structures is justified in in-house con-

sulting, even if the principal has the option to keep the information structure private, they

always benefit from publicly disclosing it.

Nonetheless, the consumer data used for forecasting is proprietary to the retailers and

will not be publicly shared with manufacturers due to business or regulatory concerns. In

this case, retailers may provide partial consumer data or even falsify it to generate inaccurate

demand forecasts, misleading manufacturers for their own benefit if the mechanism is not

designed to be incentive compatible for sharing the demand forecasts. For instance, a

retailer may attempt to withhold a portion of the sales data to generate a lower demand

forecast, allowing them to acquire replenishment from manufacturers at a reduced price

based on the contracts. Indeed, building trust is one of the key concerns regarding credible

information sharing in supply chains (Özer et al., 2011; Ebrahim-Khanjari et al., 2012).

Therefore, the implementation of the CPFR system and the associated contracts needs to

be designed to be incentive compatible for the retailers to truthfully share data for accurate

demand forecasts.

Throughout the paper, we make the simplifying assumption that learning is costless for

the principal (i.e., the retailer in the above example), as our focus is on issues concerning

the value of information in the presence of incentive constraints. We first provide a simple

illustration showing that the principal may have a strict incentive not to fully learn the

unknown features, even in environments where the information gathered by the principal

is payoff-irrelevant for the agent if transfers are not allowed. Note that in the context of

supply chains, this includes environments with monetary payments, provided that the prices

of the products are fixed and non-negotiable. In essence, the requirement of “no transfers”

4https://medium.com/@ieeecomputersocietyiit/breaking-boundaries-how-ibm-walmart-

and-pfizer-lead-the-blockchain-revolution-0eb13d5cbac2
5In the application of online platforms, a common understanding of the best possible forecasting can
also be achieved through the platform’s publicly disclosed data policy, which specifies that certain
aspects of user information will not be collected for business purposes.
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means that the principal cannot design contracts with arbitrary contingent transfers based

on the reports.

Next, we elaborate on the example where full learning is not optimal for the principal.

In this example, there are three possible demands: high, medium, and low, each with equal

prior probabilities. The prices of the products are not negotiable, but the quantities are.

Specifically, the retailer can choose to acquire nothing, a small quantity, or a large quantity

from the manufacturer based on the demand forecasts. For illustration, it suffices to specify

the net benefits (considering market price, inventory costs, production costs, etc.) for both

the retailer and the manufacturer for each quantity transaction given each demand forecast.

The net benefits of acquiring nothing (the outside option) are normalized to 0, while the net

benefits of acquiring a small quantity are 10 and −2 for the retailer and the manufacturer,

respectively, regardless of demand. The net benefit of acquiring a large quantity is 1 for the

manufacturer, regardless of demand, while it is 20 if the demand is high, 9 if medium, and 3

if low for the retailer. In this example, if the retailer can perfectly forecast the demand, they

would prefer to maximize the probability of purchasing only a small quantity when demand

is medium or low, while the manufacturer’s individual rationality constraint implies that

these probabilities can be at most 1
2 . This further indicates that the retailer’s expected

revenue is at most 12. However, if the retailer can only forecast whether the demand is low

or not, an incentive compatible and individually rational contract would involve purchasing

a small quantity from the manufacturer if the demand is low and a large quantity otherwise.

The expected revenue under this contract is 13, which is strictly higher than the optimal

profit from full learning.

The strict suboptimality of full learning in the above illustration relies heavily on the

assumption that transfers are not allowed. When transfers are permitted, consider a mech-

anism where the retailer provides a subsidy of 2 to the manufacturer for purchasing a small

quantity and requests a price reduction of 1 for purchasing a large quantity. This mechanism

is equivalent to vertically integrating the manufacturer with an ex ante transfer of 0. Under

this arrangement, by internalizing the profitability of the products from the manufacturer,

the retailer’s optimal choice, given a perfect demand forecast, is to purchase a small quan-

tity if the demand is low and a large quantity otherwise. The expected utility of the retailer

under this mechanism is 13, which is optimal. The intuition is that transfers help align

the incentives between the principal and the agent, even when the principal fully learns

the unknown payoff-relevant features. This idea extends beyond the illustrated example;

it also applies to environments where the agent has additional private information, which

may make simple vertical integration for full surplus extraction ineffective.

The first main result of our paper is to show that in any independent private value
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environment with quasilinear preference on the transfers, there always exists an optimal

mechanism where the unknown feature is fully revealed to the principal (Theorem 1). The

high level idea is that given any optimal mechanism, there exists an alternative mechanism

with fully revealing information structures where the principal can always rearrange the

allocations for each feature to maximize the principal’s utility without affecting the marginal

probability distribution on the allocations for each agent type. Moreover, a transfer rule

can be carefully chosen to ensure that the mechanism with adjusted allocations is incentive

compatible for the principal without changing the expected transfers for each agent type.

Since this is an independent private value environment, the agent’s expected utility will

not be affected and hence the incentive constraints for the agent remains intact as well.

Therefore, the alternative mechanism is feasible and weakly increases the principal’s utility,

and hence is optimal for the principal as well. Note that this result can also be easily

extended when the principal’s utility depends on the agent’s private type.

The private value and independence assumptions are also crucial for the optimality of

full learning. Specifically, if the agent’s utility depends on unknown features, as in the

market for lemons (e.g., Akerlof, 1970), or if the agent’s private type is correlated with

the unknown features (e.g., Crémer and McLean, 1988), the principal may benefit from

not fully learning these features, even with transfers. In these environments, we provide

sufficient conditions under which an optimal mechanism with fully revealing information

structures always exists if transfers are allowed (see Proposition 2 for interdependent values

and Proposition 3 for correlated environments). We also illustrate how the principal’s

utility can be strictly improved using partially revealing information structures when these

conditions are violated. A notable aspect of correlated environments is that, unlike in

Crémer and McLean (1988), full surplus extraction is generally not possible due to the

additional principal’s incentive constraints.

In our previous illustration where mechanisms with fully revealing information struc-

tures are strictly suboptimal, the result in fact also relies on the richness of the unknown

feature space. That is, in the illustration there exist multiple distinct features (i.e., de-

mands) such that the principal favors acquiring a small quantity. We show that when the

feature space is restricted, in particular when it is binary, mechanisms with fully revealing

information structures are optimal for the principal (Theorem 2). This observation holds

broadly when there are correlation or interdependent values, regardless of whether transfers

are allowed. In contrast, when there is a rich feature space, mechanisms with fully revealing

information structures in general are strictly suboptimal when transfers are not allowed

even in independent private value environments (Proposition 6).

As we illustrated above, the principal may benefit from pooling features in general
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environments, with or without transfers. However, we show that simply combining different

features may not be optimal for the principal, and more complex information structure are

required in order to alleviate the concerns of incentive constraints. In particular, when

transfers are not allowed or the agent has non-degenerate type space, there exist instances

in which the number of signals in the optimal information structure is strictly larger than

the number of possible features (Examples 1 and 2). This highlights the need to create a

rich signal space to partially and randomly pool unknown features in order to satisfy the

incentive constraints without too much loss on efficiency. Intuitively, with a richer signal

space, the principal can design mechanisms that suffer from a smaller efficiency loss while

maintaining incentive compatibility constraints, which ultimately leads to a higher expected

payoff for the principal. This leads to a sharp contrast to the classical information design

literature where Carathéodory’s theorem implies that the number of signals is at most the

number of states (Kamenica and Gentzkow, 2011). We complement this observation by

showing that Carathéodory’s theorem applies in our model when transfers are allowed and

the agent has degenerate type space (Proposition 5).

Finally, this paper focuses for the most part on environments where the principal’s in-

terim individual rationality constraints are ignored. This is plausible if the principal is not

protected by limited liability. However, there also exist environments in which the principal

will not forgo their outside options after the agent agrees to participate in the mechanism.

In such environments, with independent private values and quasilinear transfers, fully re-

vealing information structure is still optimal for the principal (Proposition 7). However, the

individual rationality constraints could impact the principal’s incentives for fully learning

the features outside such canonical environments. For example, with binary feature space,

if individual rationality constraints are imposed, there exist instances in which the optimal

information structure may require at least three signals, as we show in Section 5.

1.1 Related Work

Several papers studying joint mechanism-information design problems have recently emerged.

Papers that share our focus on information received by the principal include Bergemann

et al. (2015), Haghpanah and Siegel (2023), and Kartik and Zhong (2023). Both Berge-

mann et al. (2015) and Haghpanah and Siegel (2023) focus on characterizing implementable

principal-agent utility pairs, while our work emphasizes the principal’s ex-ante optimization

problem. Kartik and Zhong (2023) examines interdependent values with design of infor-

mation structures for both parties. Unlike these studies where the principal can commit to

truthful reporting, our focus on principal incentive compatibility highlights that fully re-

vealing information structures can be suboptimal for the principal. Other relevant works on
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joint design emphasize information disclosures made to agents to influence their willingness

to pay, such as Bergemann and Pesendorfer (2007), Daskalakis et al. (2016), Bergemann

et al. (2022), and Wei and Green (2024). Additionally, papers like Bergemann et al. (2018),

Li (2022), and Yang (2022) investigate the pricing of information. Eső and Szentes (2007)

and Li and Shi (2017) study models involving both of these considerations.

Due to our focus on learning by principals in principal-agent environments, our paper is

closely related to the literature on information acquisition by a sender in cheap-talk games

(e.g., Ivanov (2010), Kreutzkamp and Lou (2024), and Lyu and Suen (2022)). Outside of

cheap-talk games, Li and Xu (2024) studies a principal-agent environment in which the

principal learns some underlying state before playing a coordination game with the agent.

Like our paper, these papers assume that the information structure used in the principal’s

learning is public knowledge, and they address issues of incentive compatibility related

to how the relevant party uses the acquired information; specifically, the principal/sender

cannot commit to how they will utilize the information they obtain.6 Some other papers

that focus on environments in which a principal/sender learns through covert means before

interacting with their counterparty include Pavan and Tirole (2023). However, in all of

these papers, the principal/sender has no control over the rules governing their interaction

with their counterparty after their initial learning has concluded. In contrast, in this paper,

we take a mechanism design perspective and thus afford the principal flexibility in designing

the rules that govern their interaction with the agent.

Our paper is conceptually related to the literature on strategic ignorance (e.g., Kessler,

1998; Creane, 1998; Taneva and Wiseman, 2024) where the designer benefits from strategi-

cally ignoring payoff-relevant information when they cannot commit to how that information

will be used. The benefit of strategic ignorance has also been identified in lemon markets

(Akerlof, 1970), Stackelberg games for maintaining first-mover advantages (Gal-Or, 1987),

risk sharing markets (Hirshleifer, 1971), buyer optimal learning (Roesler and Szentes, 2017),

communication and delegation (Deimen and Szalay, 2019), and etc. In contrast, our paper

provides two general environments where fully revealing information structures are optimal

for the principal despite the additional concerns for incentive constraints.

Our paper is also related to the literature studying informed principal problems (e.g.,

Myerson (1981), Maskin and Tirole (1990), Maskin and Tirole (1992), Mylovanov and Tröger

(2012, 2014), Koessler and Skreta (2023), Clark (2024a,b), and Clark and Yang (2024)).

However, in the environments studied by these papers, the principal is privately informed

before contracting occurs, while, crucially in our model, the principal can become privately

6Our requirement of incentive compatibility for the principal also relates to the literature on credible
auctions (e.g. Akbarpour and Li, 2020; Ferreira and Weinberg, 2020).
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informed only after they have committed to and implemented a mechanism.

2 Model

2.1 Preliminaries

There is a principal and an agent. (For convenience, throughout the paper, we study settings

with only one agent, but all of our results extend naturally to settings with multiple agents.)

There is a non-empty set of possible features Ω as well as a non-empty set of possible agent

types Θ. We assume that both Ω and Θ are finite. Moreover, the realized feature-agent type

pair (ω, θ) ∈ Ω × Θ is distributed ex-ante according to distribution F ∈ ∆(Ω × Θ), which

is commonly known by the principal and agent. We let FΩ ∈ ∆(Ω) denote the marginal

distribution over realized features obtained from F and FΘ ∈ ∆(Θ) denote the marginal

distribution over realized agent types obtained from F , and we assume that both FΩ and

FΘ are full-support. Additionally, we let FΘ : Ω → ∆(Θ) be the mapping that gives the

conditional probability distribution of Θ given Ω under F and FΩ : Θ → ∆(Ω) be the

mapping that gives the conditional probability distribution of Ω given Θ under F .

The agent’s type is directly observed by the agent before they interact with the prin-

cipal; however, there is no information gained about the feature by either party until their

interaction commences. Instead, the principal commits to a mechanism which, should it be

accepted by the agent, among its other purposes, dictates the manner in which the principal

learns about the underlying feature. (We will formulate the other purposes of such mech-

anisms shortly.) Specifically, the mechanism commits to an information structure (S, σ),

which is a tuple consisting of a signal space S, which is a non-empty compact metric space,

and a measurable mapping σ : Ω → ∆(S) from underlying features to probability distribu-

tions over signals. The ultimate signal realization of the principal’s information structure

can be viewed as the principal’s endogenously acquired “type.” While, in principle, we

could allow the principal to choose from all possible information structures, familiar argu-

ments show that it is without loss for our purposes to restrict the principal to choosing from

“canonical” information structures in which S = ∆(Ω) and σ gives a regular conditional

probability distribution over Ω given ∆(Ω) under the probability distribution over Ω×∆(Ω)

that would be generated by FΩ and σ. (Ignoring technical qualifications, what this captures

intuitively is that the realized signal s ∈ ∆(Ω) almost surely coincides with the Bayesian

posterior that would be held by a principal with initial prior FΩ upon observing s under

information structure (∆(Ω), σ).) Motivated by this, we will identify an arbitrary canonical

information structure (∆(Ω), σ) with its underlying mapping σ. We let I denote the set of
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canonical information structures.

Aside from informational aspects of the environment such as the underlying feature or

agent type, the payoffs of the parties are affected by the ultimate allocation. The space

of possible allocations is a non-empty metric space denoted by X. The principal’s utility

function is U : Ω × Θ × X → R and the agent’s utility function is V : Ω × Θ × X → R.
We assume that both U and V are continuous. Additionally, both parties have an outside

option, and each party’s outside option gives them a payoff of 0 regardless of (ω, θ) ∈ Ω×Θ.

The mechanism that the principal chooses controls not only how they learn about the

underlying feature but also how allocations are determined. We will impose familiar re-

strictions on the mechanisms we consider. In particular, it can be shown, using a version of

the revelation principle appropriate for our setting, that it is without loss of generality for

our purposes to restrict attention to direct mechanisms that are incentive compatible and

satisfy various forms of individual rationality. Specifically, a direct mechanism M = (σ,x) is

a tuple consisting of a canonical information structure σ and an allocation rule of the form

x : ∆(Ω) × Θ → ∆(X ∪ {o}). Throughout the paper, o denotes the outside options being

realized. We will abuse notation by having U(ω, θ, o) = V (ω, θ, o) = 0 for all (ω, θ) ∈ Ω×Θ.

We interpret the principal proposing a mechanism M = (σ,x) in which x(s, θ) = δo for all

(s, θ) ∈ ∆(Ω) × Θ as the principal choosing to not form a relationship with the agent and

instead have the outside options be realized. We let M denote the set of direct mechanisms.

The timing of the interaction we consider is as follows. First, nature draws a feature-

agent type pair (ω, θ) ∈ Ω×Θ according to the probability distribution F ∈ ∆(Ω×Θ), the

agent observes their realized type θ ∈ Θ, and the principal proposes a direct mechanism

(σ,x) ∈ M. The agent then observes the proposed mechanism (σ,x) and either rejects,

in which case both parties receive their outside options, or accepts, in which case their

interaction proceeds governed by the mechanism M . In particular, if the agent accepts

a proposal of (σ,x), then nature draws a signal s ∈ ∆(Ω) according to the information

structure σ(ω) ∈ ∆(∆(Ω)).7 The principal observes the realized signal s, and then the

principal and agent simultaneously submit type reports. Regardless of their true signal

s ∈ ∆(Ω), every s′ ∈ ∆(Ω) is a type report that the principal could choose; likewise,

regardless of their true type θ ∈ Θ, every θ′ ∈ Θ is a type report that the agent could

choose. If the principal reports type s′ ∈ ∆(Ω) and the agent reports type θ′ ∈ Θ, then

the resulting x ∈ X ∪ {o} is drawn according to x(s′, θ′) ∈ ∆(X ∪ {o}). Then payoffs are

realized and the interaction concludes.

7Observe that, conditional on the underlying feature, the draw of the signal is statistically indepen-
dent of the agent’s type.
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2.2 The Principal’s Problems and Key Information Structures

The mechanism offered by the principal needs to be incentive compatible for both the

principal and the agent as well as individually rational for the agent. (Regarding individual

rationality for the principal, we will study environments in which no interim individual

rationality constraints for the principal are imposed as well as environments in which the

mechanism that the principal selects must be interim individually rational for all “types”

of the principal.) For all s ∈ ∆(Ω), let G(s) ∈ ∆(Ω × Θ) be the probability distribution

over Ω×Θ given by first drawing ω ∈ Ω according to s and then drawing θ ∈ Θ according

to FΘ(ω). Note that G(s) gives the belief that the principal would hold over Ω × Θ after

updating their prior F upon observing a signal that would lead them to hold s as their

marginal conditional probability distribution over Ω. For all θ ∈ Θ and σ ∈ I, let H(θ, σ) ∈
∆(Ω×∆(Ω)) denote the probability distribution over Ω×∆(Ω) generated by first drawing

ω ∈ Ω according to FΩ(θ) and then drawing s ∈ ∆(Ω) according to σ(ω) ∈ ∆(∆(Ω)).

Note that H(θ, σ) gives the belief that the type θ agent would hold over the ultimate

(ω, s) ∈ Ω×∆(Ω) after observing the principal pick information structure σ. Our incentive

compatibility constraints can be expressed as follows:

s ∈ arg max
s′∈∆(Ω)

E(ω,θ)∼G(s)

[
Ex∼x(s′,θ) [U(ω, θ, x)]

]
∀s ∈ ∆(Ω), (PIC)

θ ∈ argmax
θ′∈Θ

E(ω,s)∼H(θ,σ)

[
Ex∼x(s,θ) [V (ω, θ, x)]

]
∀θ ∈ Θ, (AIC)

where (PIC) marks the principal incentive compatibility constraints and (AIC) marks the

agent incentive compatibility constraints. The agent individual rationality constraints can

be expressed as

E(ω,s)∼H(θ,σ)

[
Ex∼x(s,θ) [V (ω, θ, x)]

]
≥ 0 ∀θ ∈ Θ. (AIR)

Additionally, each mechanism of interest must be such that, for every agent type θ ∈ Θ

and all principal types s, s′ ∈ ∆(Ω), the probability of o occurring given (s, θ) equals the

probability of o occurring given (s′, θ):

x(s, θ)[o] = x(s′, θ′)[o] ∀s, s′ ∈ ∆(Ω), θ ∈ Θ. (Consistency)

This is because the outside options are realized if and only if the principal chooses to not

form a relationship with the agent or the agent rejects the principal’s proposal and, in both

of these cases, neither party would have acquired information about the underlying feature

before the final decisions were made. We say that a mechanism M ∈ M is feasible if and

only if it satisfies the constraints given in (PIC), (AIC), (AIR), and (Consistency), and we
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use MF to denote the set of feasible mechanisms.

For most of the paper, we will focus on the problem of finding feasible mechanisms that

maximize the principal’s ex-ante expected payoff across all feasible mechanisms:

max
(σ,x)∈MF

E(ω,θ)∼F

[
Es∼σ(ω)

[
Ex∼x(s,θ) [U(ω, θ, x)]

]]
. (OPT)

However, we will also consider the problem of the principal maximizing their ex-ante

expected utility with mechanisms that are feasible and also interim individually rational for

the various principal types. More specifically, we will consider interim principal individual

rationality constraints of the form

E(ω,θ)∼G(s)

[
Ex∼x(s,θ) [U(ω, θ, x)]

]
≥ 0 ∀s ∈ ∆(Ω). (PIR)

We will say that a mechanism M is feasible and individually rational if and only if it is

feasible and satisfies the principal individual rationality constraints given by (PIR). We

use MF,IR to denote the set of feasible and individually rational mechanisms, and we will

consider the associated principal problem:

max
(σ,x)∈MF,IR

E(ω,θ)∼F

[
Es∼σ(ω)

[
Ex∼x(s,θ) [U(ω, θ, x)]

]]
. (OPT-IR)

For all of the environments we study in this paper, both of these principal problems

are well-defined and have solutions. We note here that existence can be established in

several classes of environments of usual interest. For instance, standard arguments, which

are presented in OA (1) of the Online Appendix, show that, for all primitive environments

in which X is compact and U and V are continuous, both of these principal problems are

well-defined and have solutions.

Proposition 1. For all environments in which X is compact and U and V are continuous,

the problem given by (OPT) and the problem given by (OPT-IR) have solutions.

We will focus much of our study on the nature of information structures used in opti-

mal mechanisms. Some benchmark canonical information structures are the fully revealing

information structure, which is the information structure σFR ∈ I given by σFR(ω) = δω

for all ω ∈ Ω, and the fully uninformative information structure, which is the information

structure σFU ∈ I satisfying σFU (ω) = Fω for all ω ∈ Ω. Often it is the case that every

optimal mechanism has an information structure that is not fully uninformative since it can

be beneficial to condition the allocation on informative signals of the underlying feature.

Moreover, despite the principal’s choice of information structure not directly impacting their

11



payoff, it is often the case that every optimal mechanism has an information structure that is

not fully revealing. As we will see, the requirements of principal incentive compatibility can

lead to garbled information structures facilitating mechanisms with strictly better payoffs

for the principal than all feasible mechanisms with fully revealing information structures.

2.3 Quasilinear Environments

For much of the paper, we will specialize to the canonical class of quasilinear environments

with transfers. In such environments, the allocation space X has a product structure of the

form X = Y × R, where Y is a non-empty compact metric space. Additionally, for such

environments, there are continuous functions u : Ω × Θ × Y → R and v : Ω × Θ × Y → R
such that, for each (ω, θ, (y, t)) ∈ Ω×Θ×X, the corresponding principal utility satisfies

U(ω, θ, (y, t)) = u(ω, θ, y) + t

and the corresponding agent utility satisfies

V (ω, θ, (y, t)) = v(ω, θ, y)− t.

3 Optimal Mechanisms for Quasilinear Payoffs

In this section, we study our mechanism design problem in the canonical class of quasilinear

environments with transfers formalized in Section 2.3. We first focus on a subclass of

environments that includes the classic “independent private values” environments as well

as, more broadly, all environments in which the underlying feature and agent type are

statistically independent and the agent does not directly care about the underlying feature.

We will see that, for all environments in this class of “IAPV” environments, there is an

optimal mechanism that utilizes a fully revealing information structure. Outside of this

class of environments, it can be that every optimal mechanism involves a non-fully-revealing

information structure, which we demonstrate both in various interdependent environments

that formalize some of the illustrative examples discussed earlier in the introduction, as

well as in environments that are not interdependent but feature correlation between the

underlying feature and agent type. We conclude the section by analyzing properties of the

numbers of on-path signals used in the information structures of the optimal mechanisms

in various quasilinear environments.
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3.1 Independent and Agent Private Values

We begin with the natural benchmark in which the agent type and underlying feature are

independent and the agent does not directly care about the feature. Formally, we say that a

quasilinear environment with transfers exhibits independent and agent private values

if and only if F = FΩ × FΘ and v(ω, θ, x) = v(ω′, θ, x) for all ω, ω′ ∈ Ω, θ ∈ Θ, x ∈ X. For

brevity, we will sometimes refer to such environments as being IAPV . We note that, in

the terminology of Mylovanov and Tröger (2014), such environments would be said to have

“generalized private values.”

In all IAPV environments, fully learning the underlying feature is consistent with prin-

cipal ex-ante optimality.

Theorem 1. In all independent and agent private value environments, there is an optimal

mechanism with a fully revealing information structure.

We saw in the introduction an example of an IAPV environment and a (somewhat

informal) description of an optimal mechanism with a fully revealing information structure.

Key to that mechanism is that the presence of transfers enables the construction of a

transfer scheme that perfectly aligns the incentives of a fully informed principal with efficient

trade. Intuitively, the ability of the transfers to align the incentives of a fully informed

principal with efficient allocation distributions (under appropriate notions of efficiency)

extends generally across quasilinear environments.

We show in Appendix A that, for an arbitrary feasible mechanism, holding fixed an

arbitrary agent type, there is an allocation-transfer scheme that would (1) result in that

agent type obtaining the same expected transfer and marginal distribution over allocations

as the original mechanism, (2) maximize the ex-ante principal surplus, conditional on the

agent type, across all allocation-transfer schemes that give the agent type the same expected

transfer and marginal distribution over allocations as the original mechanism, and (3) be

incentive compatible for the principal. This is due to the presence of transfers and their

quasilinearity in the principal’s utility function, and can be seen as a consequence of the fact,

which we do not explicitly develop here, that in all environments with quasilinear linear

transfers and a single player with potentially multiple types, for an arbitrary marginal

distribution over allocations, all allocation rules that achieve this marginal distribution and

maximize the total expected surplus across all allocation rules that achieve this marginal

distribution can be made incentive compatible with an appropriate transfer rule.8

8Other papers that have developed similar results for other settings include Bei and Huang (2011);
Hartline et al. (2015).
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Using this, it follows that, for an arbitrary feasible mechanism, we can obtain a mech-

anism with a fully revealing information structure that is incentive compatible for the

principal, gives the principal a weakly higher ex-ante payoff than the original mechanism,

and, for each agent type report, would result in the same expected transfer and marginal

distribution over allocations as the original mechanism when the principal reports their ob-

servations truthfully with probability 1 regardless of the true agent type. Due to the agent’s

utility being quasilinear in transfer and not directly varying with the underlying feature,

it follows that all such mechanisms must be incentive compatible and individually rational

for the agent and thus feasible.

The justification that the fully revealing mechanisms used in the argument are incentive

compatible for the agent relies on (1) the agent not directly caring about the underlying

feature and (2) the agent’s true type being uninformative about the distribution of the

feature. In the next subsection, we will relax the first of these assumptions and in the

following subsection, we will relax the second. In both subsections, we will see environments

in which there is no optimal mechanism with a fully revealing information structure.

3.2 Agent Interdependent Values

To emphasize the effect on agent’s interdependent values, in this section, we focus on settings

where the types are independent, and the principal has private values. As illustrated in the

introduction, when the agent has interdependent values, mechanisms with fully revealing

information structures can be strictly suboptimal for the principal. To fully characterize the

optimal mechanisms and identify conditions under which mechanisms with fully revealing

information structures are optimal, we restrict our attention to a classic lemon’s problem

with linear utilities. Specifically, we assume that allocation space is Y = {0, 1}, type spaces
Ω,Θ ⊂ [0, 1], and there exists function c : Ω → R such that

U(ω, θ, y, t) = ω(1− y) + t and V (ω, θ, y, t) = (c(ω) + θ)y − t.

Proposition 2. In the lemon’s problem, fixing the utility function of both the principal and

the agent and the distribution over unknown features,

(1) c(ω)− ω is non-increasing in ω for all ω in the support of FΩ; or

(2) c(ω)− ω is linearly increasing in ω for all ω in the support of FΩ.

if and only if, for every agent type set and corresponding type distribution, there exists a

mechanism with fully revealing information structure.
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An immediate observation is that the condition in Proposition 2 is always satisfied when

the distribution over features has binary support, and hence Proposition 2 also implies that

mechanisms with fully revealing information structures are optimal in the lemon’s problem,

which is consistent with Theorem 2.

The first condition in Proposition 2 implies that the total surplus from selling the item

to the agent is weakly decreasing in the principal’s value for the item. This implies that

there won’t be any conflict of interests for selling the item to the agent. In particular, to

maximize the total surplus from selling the item, items with lower values for the principal

will be sold, and such allocation rule can be implemented in an incentive compatible way

for the principal as the principal has stronger incentives to sell low value items. Therefore,

in this case, mechanisms with fully revealing information structures are optimal since it

provides the maximum amount information in order for the trade to occur more efficiently,

and thereby extracting higher revenue from the agent.

The second condition in Proposition 2 implies that there is a linear relationship between

the total surplus and the principal’s value for the item. The benefits of the linear structure is

that given any information structure for learning the unknown features, the pair of expected

total surplus and principal’s value given the posterior belief always lies on this straight

line. In this case, regardless of the information structure, the optimal mechanism is to

ignore the principal’s report by pooling all types together. Therefore, mechanisms with

any information structure, including fully revealing information structure, can be optimal

in this case.

3.3 Correlated Types

In this section, we focus on settings where the feature is correlated with the agent’s private

type, and we further assume that both the principal and the agent have private values

throughout the section.

We first consider the case where the feature is payoff irrelevant for the principal, i.e.,

u(ω, θ, y) = u(ω′, θ′, y) for all ω, ω′ ∈ Ω, θ, θ′ ∈ Θ, y ∈ Y . This special environment includes

applications where features represent personal data that are informative about the agents

values for the item, which naturally are payoff irrelevant for the principal.

Proposition 3. In private value environments, if the agent type set is binary and the

unknown features are payoff irrelevant for the principal, there exists an optimal mechanism

with a fully revealing information structure.

We first show that if the agent type set is binary, it is without loss of optimality to only

consider mechanisms that set principal’s utilities that are independent of their own types,

15



which is formalized in Lemma 1. Proposition 3 then follows by the observation that for

any mechanism with principal’s utility independent from their reported type, there exists

another mechanism with fully revealing information structure that simulates the original

mechanism by randomly pooling the principal’s report. This generates the same expected

utility to the principal without violating the incentive constraints.

Lemma 1. In private value environments, if the agent has binary type and the unknown

features are payoff irrelevant for the principal, there exists an optimal mechanism such that

the utility of the principal is independent of their type.

Another immediate consequence of Lemma 1 is that the principal cannot extract full

surplus from the agent in monopoly auctions without allocation costs even when distribu-

tions are correlated. This leads to a sharp contrast to Crémer and McLean (1988) where

the incentive constraints for the principal are not required. The main reason is that due to

the principal’s incentive constraints, the transfers cannot depend on principal’s additional

information on agent’s valuation, and hence the mechanism designed by the principal loses

the ability to fully eliminate the information rents using signal-dependent prices.

Corollary 1. In monopoly auctions without allocation costs, when the agent’s type dis-

tribution has non-degenerate binary support 0 < θ0 < θ1, the principal cannot extract full

surplus from the agent.

Next we provide an example to show that when the unknown features are payoff relevant

for the principal, mechanisms with fully revealing information structures can be strictly

suboptimal for the principal. In this example, the principal has binary actions, selling the

good or not, and there are three different features where we use the value of the features

to denote the cost of selling the good. The cost of not selling is normalized to 0. Note

that there exists two features (ω = 0.5 and 0.8 in Table 1) such that the principal’s value

is positively correlated with the agent’s value for the item, i.e., higher agent type occurs

with higher probability conditional on the principal’s value for the item being higher given

the realized feature. We show that when the feature is fully revealed to the principal, the

mechanism that maximizes principal’s payoff is to provide the same allocation and transfer

rules for both features ω = 0.5 and 0.8. We then show that the principal can strictly

improve her payoff by pooling those two features to relax the incentive constraints from the

other feature ω = 0.2.

Proposition 4. There exists a principal-agent setting with private values and correlated

types such that any mechanism with a fully revealing information structure is strictly sub-

optimal.
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ω\θ 0.6 0.9
0.2 0.15 0.2
0.5 0.2 0.1
0.8 0.15 0.2

Table 1: Joint distribution over features and agent’s types.

3.4 Cardinalities of Sets of Induced Interim Beliefs

Here we study the cardinalities of the sets of principal interim beliefs concerning the under-

lying feature that are induced by information structures used in optimal mechanisms. From

Theorem 1, it follows that in IAPV environments, there is an optimal mechanism whose

information structure is fully revealing and thus is such that the set of principal posterior

beliefs that are induced with strictly positive probability has a weakly smaller cardinality

than the set of possible features. However, we will see that there are environments out-

side of these classes in which every optimal mechanism must induce strictly more principal

interim beliefs than the number of possible features. One takeaway from this is that, in

some environments, in order to effectively balance tailoring the results of the mechanism

with the underlying feature with satisfying incentive constraints for the principal, optimal

mechanisms must adopt intricate information structures that garble features in a relatively

sophisticated manner. In such environments, certain simple but natural information struc-

tures such as those obtained by partitioning the set of features and simply revealing which

partition element contains the underlying feature cannot feature in an optimal mechanism.

There is a natural comparison with the common finding from the information design

literature that, in standard setups with finite sets of possible states, there is guaranteed to be

an optimal information structure in which the number of distinct posterior beliefs that are

induced with strictly positive probability is at most the number of states. These findings can

be seen as a consequence of Carathéodory’s theorem and the fact that the main constraints

in the associated design problems are “Bayes plausibility” constraints which concern the

induced distribution over posteriors averaging out to the prior.

Similar considerations to those used to demonstrate these findings of the standard infor-

mation design literature can be used to show that, in our setup, all quasilinear environments

with transfers and just one possible agent type have optimal mechanisms in which the num-

ber of interim beliefs induced in the principal is weakly less than the number of distinct

possible features.9 Intuition for this result is as follows. In all quasilinear environments with

9There are environments in this class, which consequently have optimal mechanisms in which the
number of interim beliefs induced in the principal is weakly less than the number of distinct possible
features, such that every optimal mechanism must induce at least as many interim beliefs in the
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transfers and just one possible agent type, every mechanism that respects the principal IC

constraints and maximizes the total expected surplus across all feasible mechanisms can be

modified into an optimal feasible mechanism by uniformly shifting the transfer rule so that

the agent’s IR constraint is satisfied with equality. Moreover, in the alternative problem

of maximizing the ex-ante expected surplus across the set of mechanisms that satisfy the

principal IC constraint, Carathéodory’s theorem can be used, in a manner similar to its use

in the standard information design literature, to show that there is an optimal mechanism

which induces weakly fewer interim beliefs in the principal than the number of features.

This is because Carathéodory’s theorem implies that, for every mechanism that is incentive

compatible for the principal, there is a mechanism which is incentive compatible for the

principal, induces weakly fewer interim beliefs in the principal than the number of features,

and results in a weakly higher ex-ante expected surplus than the original mechanism. In

particular, by Carathéodory’s theorem, for every mechanism that induces finitely many

distinct interim beliefs in the principal, there is an alternative mechanism which (1) only

induces interim beliefs that are also induced by the original mechanism, (2) induces weakly

fewer interim beliefs than the number of features, (3) for each interim belief induced, has

the same conditional outcome as in the original mechanism, and (4) gives a weakly higher

ex-ante expected surplus than the original mechanism. Moreover, for every mechanism that

is incentive compatible for the principal and induces finitely many distinct interim beliefs

in the principal, the alternative mechanism justified by Carathéodory’s theorem described

above must be incentive compatible for the principal. A formal version of this argument,

provided in Appendix A.4, gives the following.

Proposition 5. For all quasilinear environments with transfers, if |Θ| = 1, then there is

an optimal mechanism (σ,M) such that | ∪ω∈Ω supp(σ(ω))| ≤ |Ω|.

However, in some environments outside of this class, there are effectively other con-

straints which preclude applications of Carathéodory’s theorem that show that there is an

optimal mechanism that induces weakly fewer interim beliefs in the principal than the num-

ber of features. The following example consists of a quasilinear environment with transfers

in which there are 3 possible features, 2 possible agent types, and there is a mechanism

in which exactly 4 signals are induced with strictly positive probability that does strictly

better than every mechanism that has weakly fewer than 3 signals.10

Example 1. The principal’s type set ω = {ω1, ω2, ω3} has precisely 3 elements, the agent’s

type set θ = {θ1, θ2} has precisely 2 elements, and the allocation set Y = {y1, y2, y3, y4, y5}

principal as the number of features and be not fully revealing. OA (2.1) presents such an example.
10OA (2.3) presents a non-quasilinear environment with 3 possible features and just 1 agent type in
which every optimal mechanism must induce at least 4 interim beliefs in the principal.
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has precisely 5 elements. The prior distribution λ ∈ ∆(Ω × Θ) is such that the principal’s

type and the agent’s type are statistically independent, the marginal distribution over the

principal’s type λΩ ∈ ∆(Ω) is given by λΩ[ω1] = λΩ[ω2] = λΩ[ω3] = 1/3, and the marginal

distribution over the agent’s type λΘ ∈ ∆(Θ) is given by λΘ[θ1] = 4/5 and λΘ[θ2] = 1/5.

The utilitiess to the principal and the agent, net of transfers, from the various allocations

are given in the following table. (The table is such that, for each (ω, θ, y) ∈ Ω × Θ × Y ,

the first number in the corresponding pair of numbers gives the principal’s utility while the

second number gives the agent’s utility.)

ω1 y1 y2 y3 y4 y5

θ1 0, 1 −1.2, 0 0, 0 −1, 0 0, 0

θ2 0, 10 −1.2, 0 0, 0 −1,−10000 0, 0

ω2 y1 y2 y3 y4 y5

θ1 −1.2, 0 0, 1 −1.2, 0 0, 0 0, 0

θ2 −1.2, 0 0, 10 −1.2, 0 0, 0 0, 0

ω3 y1 y2 y3 y4 y5

θ1 −.1, 0 −1,−1000 −.1, 1 −.9,−1000 0,−1000

θ2 −.1, 0 −1,−10000 −.1, 10 −.9,−10000 0,−10000

Table 2: The utilities net of transfers for Example 1.

In this environment, note that, regardless of the agent type θ ∈ {θ1, θ2}, the efficient

allocation is y1 when the underlying feature is ω1, y2 when the underlying feature is ω2,

and y3 when the underlying feature is ω3. While the principal would like to be able to

implement a mechanism that results in the efficient allocation with probability 1 and fully

extracts the surplus, no such mechanism is feasible due to the type θ2 agent obtaining 10

times the value of the type θ1 from each pair of underlying feature and associated efficient

allocation. However, the principal can implement mechanisms that come close to fully

extracting surplus for the principal by reducing the information rent of the type θ2 rent by

having y4 occur with small but strictly positive probability conditional on (ω1, θ1) since y4

gives the type θ2 agent much greater disutility than the type θ1 agent when the underlying

feature is ω1.

OA (2.2) shows that, in this environment, there is a mechanism that induces 4 interim

beliefs in the principal and achieves an ex-ante expected utility for the principal that is very

close to the ex-ante expected surplus that would be generated by the efficient allocation

rule. The underlying information structure is such that, for each underlying feature, there
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is a degenerate interim belief that puts probability 1 on the feature and occurs with high

probability conditional on the associated feature. The non-degenerate interim belief puts

probability 1/2 on feature ω1 and probability 1/2 on feature ω2 and occurs with relatively

small probability conditional on ω1 or ω2. Conditional on the degenerate interim beliefs,

the efficient allocations are implemented with probability 1, while, conditional on the non-

degenerate interim belief, allocation y4 is implemented with probability 1. The transfers are

chosen so that the various incentive compatibility and individual rationality constraints hold

and the principal fully extracts the ex-ante expected surplus generated by the associated

allocation rule and information structure.

OA (2.2) further shows that this mechanism achieves a strictly higher ex-ante expected

utility for the principal than every feasible mechanism that induces at most 3 interim beliefs

in the principal. Intuitively, every feasible mechanism that achieves at least the ex-ante ex-

pected utility for the principal as the mechanism discussed above must have an information

structure that is close to fully revealing in that, for each underlying feature ω ∈ Ω, the asso-

ciated conditional distribution over posteriors must put very high probability on beliefs that

put very high probability on ω, and there is a sufficiently high probability of y4 conditional

on (ω1, θ1). Thus, among the feasible mechanisms that induce at most 3 interim beliefs in

the principal, only those which induce three distinct interim beliefs λΩ,1, λΩ,2, λΩ,3 ∈ ∆(Ω)

such that, for each i ∈ {1, 2, 3}, λΩ,i[ωi] is sufficiently high could possibly sustain as high

an ex-ante expected utility to the principal as the mechanism discussed in the preceding

paragraph. However, a consequence of principal incentive compatibility is that, for all such

feasible mechanisms that induce precisely 3 interim beliefs in the principal and generate

a sufficiently high probability of y4 conditional on (ω1, θ1), the probability of {y2, y4, y5}
conditional on (ω3, θ1) must meet a certain threshold. The extreme inefficiency y2, y4, and

y5 conditional on ω3 then precludes the ex-ante expected utility of the principal from such

a mechanism from being weakly greater than that mechanism that induces 4 interim beliefs

in the principal discussed in the preceding paragraph.

4 Optimal Mechanisms for General Payoffs

In this section, we provide characterizations of the optimal mechanisms without the restric-

tion to quasi-linear payoffs. In particular, we will provide sufficient conditions such that the

optimal mechanism fully reveals the features to the principal, and illustrate the properties

of the optimal mechanisms when fully revealing the features is strictly suboptimal. The

omitted proofs for this section will be provided in Appendix B.
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4.1 Binary Feature Space

In this section, we consider the case where the feature space Ω is binary and show that there

exists an optimal mechanism that fully reveals the features to the principal. A canonical

application of binary feature space in the field of industrial organization occurs when the

feature represents the quality of a product available for sale, which can be either high or low.

In this context, the manufacturer can design ex ante mechanisms for monitoring product

qualities and contracting with downstream firms.

Theorem 2. If |Ω| = 2, there is an optimal mechanism in which the feature is fully revealed.

Intuitively, for any mechanism M that is incentive compatible for the principal and

potentially only reveals partial information about the features, the principal can construct

another mechanism M̃ that fully reveals the features and simulates the mapping from

reports to distribution over outcomes based on the original mechanism M . Therefore, the

constructed mechanism induces the same distribution over outcomes for all pair of feature

and agent’s type. Moreover, the following lemma shows that the constructed mechanism

M̃ is also feasible, i.e., it is incentive compatible for both the principal and the agent, and

individually rational for the agent. Theorem 2 follows immediately from this observation.

Lemma 2. If |Ω| = 2, given any feasible mechanism, there is another feasible mechanism

in which the feature is fully revealed and which induces the same outcome as the original

mechanism.

The main challenge for Lemma 2 is to show that the constructed mechanism is incentive

compatible for the principal. For binary feature space, we assume Ω = {0, 1} without loss

of generality. In any mechanism M , the posterior belief of the principal can be represented

as a single number in [0, 1], representing the posterior probability that the true feature is 1.

Based on the incentive constraints in mechanism M for the principal, higher posterior belief

implies that the interim utility of the principal conditional on the state being 1 is higher.

Moreover, when the feature space is binary, the distribution over posterior beliefs condition

on the true feature being 1 first order stochastically dominates distribution over posterior

beliefs condition on the true feature being 0. Therefore, in mechanism M̃ , when the true

feature is 1, reporting 1 leads to higher interim utility for the principal since the expected

value of a monotone function increases in first order stochastic dominance. Similarly, when

the true feature is 0, reporting 0 leads to higher interim utility for the principal, and hence

mechanism M̃ is incentive compatible for the principal.

In the above discussion, the key property in the binary feature model that facilitates

the derivation of such results is the ability to attain the properties of monotone likelihood
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ratios and, consequently, first-order stochastic dominance for free. In Section 4.2, we will

show that when the feature space is not binary, such properties do not hold, and in general,

mechanisms with fully revealing information structures can be strictly suboptimal.

4.2 Suboptimality of Fully Revealing Information Structures

In this section, we show that when the feature space is not binary, in general there are

environments in which mechanisms with fully revealing information structures are strictly

suboptimal. However, even though mechanisms with partially revealing information struc-

tures are optimal, we show that the principal never strictly prefers mechanisms with fully

uninformative information structures.

We first focus on a independent private value environment. That is,

U(ω, θ, x) = U(ω, θ′, x), ∀ω ∈ Ω,∀θ, θ′ ∈ Θ,∀x ∈ X,

V (ω, θ, x) = V (ω′, θ, x), ∀ω, ω′ ∈ Ω,∀θ ∈ Θ, ∀x ∈ X.

Therefore, we omit θ in the notation of principal’s utility and ω in the notation of agent’s

utility in such environments.

To simplify, we further restrict the outcome space to be X = {0, 1} and the agent’s type

space to be Θ = {θ}. In this binary action model, let the payoff differences of the principal

between two allocations be d(ω) ≜ U(ω, 1) − U(ω, 0). We focus on the non-degenerate

utility of the agent where V (θ, 0) < 0 and V (θ, 1) > 0. This is because otherwise, either

the individual rationality constraint of the agent can never be satisfied, or the principal can

easily implement the first best solution. We show that even in such degenerate environments,

the mechanisms with fully revealing information structures is strictly suboptimal for the

principal if the feature space is rich.

Proposition 6. In independent private value environments with degenerate agent type and

binary allocations, any mechanism M = (S, σ,x) with fully revealing information structure

(S, σ) is strictly suboptimal for the principal if

1. U(ω, x) ≥ 0 for all ω ∈ Ω, x ∈ X;

2. FΩ[{ω ∈ Ω : d(ω) ≥ 0}] < −V (θ,0)
V (θ,1)−V (θ,0) ; and

3. there exists ω, ω′, ω′′ in the support of FΩ such that d(ω′′) > 0 > d(ω′) > d(ω).

We first interpret the conditions in Proposition 6. Condition 1 implies that the utility

of the principal for any outcome is higher than her outside option. Therefore, it is without

loss of generality to focus on mechanisms that incentivize the agent to never take the
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outside option. Note that requiring that agent has incentives not to take outside option

in the optimal mechanism is a necessary condition for fully revealing information structure

to be strictly suboptimal, because otherwise for any information structure, there exists

a mechanism with such information structure that is weakly optimal (by implementing

outcome 0 for any report of the agent to incentive the agent to take the outside option).

Our condition 1 is one sufficient condition to ensure that this can never happen. Condition 2

implies that the mechanism that implements the first best is not individually rational for the

agent. To see this, in the first best mechanism, the information structure is fully revealing,

and outcome 1 is chosen for feature ω if and only if d(ω) ≥ 0. Therefore, the probability

outcome 1 is chosen is FΩ[{ω ∈ Ω : d(ω) ≥ 0}]. It is easy to verify that the inequality

in condition 2 is equivalent to the utility of the agent in the first best mechanism being

negative. This condition in necessary to introduce the tension between maximizing the

expected payoff of the principal, and the individually rational constraint for the agent.

Finally, the most substantial assumption is condition 3. It rules out the binary feature

space considered in Theorem 2. The high level intuition is that, when there are multiple

distinct features such that the principal strictly prefers allocation 0, it is beneficial to pool

features with lesser inclinations towards choosing allocation 0 alongside those that favor

allocation 1. This information structure helps increases the probability allocation 1 is chosen

for features with larger d(ω) relative to features with smaller d(ω), and hence increasing

the principal’s expected payoff.

To prove Proposition 6, we first show that when the features are fully revealed to the

principal, the mechanism has to treat all features with negative values to the principal

equally in order to satisfies the incentive constraint for the principal. However, by using the

information structure that pools features that have largest negative values for the principal

with features that have positive values, the principal can increase the expected payoff by

shifting the allocation probability for x = 1 from features with low values to features

with high values. This is strictly beneficial for the principal under the three conditions in

Proposition 6.11

5 Principal Interim Individual Rationality Constraints

Here we study effects of the principal interim individual rationality constraints. In partic-

ular, whereas the rest of the paper has predominantly focused on Program (OPT), in this

11In Appendix 3, we show that although mechanisms with fully revealing information structures is
strictly suboptimal, mechanisms with fully uninformative information structures are never strictly
optimal for the principal
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section we focus on Program (OPT-IR). Some settings in which Program (OPT-IR) might

be particularly natural include those in which the principal cannot commit themselves to

forego their outside option after they have learned information about the underlying fea-

ture. Perhaps a more compelling class of settings for study of Program (OPT-IR) are those

in which, rather than the principal actively participating in the mechanism essentially as an

agent themself, there is a single agent that learns about the underlying feature (in a mannger

completely controlled by the information structure chosen to be part of the mechanism) and

whose utility function completely aligns with the principal. In this way, whereas the incen-

tive compatibility constraints would be equivalent to those for the principal if the principal

were to take the agent’s role, the agent might naturally have interim outside options which

the mechanism must incentivize them to forego.

The set of optimal mechanisms depended heavily on whether PIR constraints were

being imposed: Without the imposition of such constraints, there were optimal mechanisms

with fully revealing information structures (in fact, every information structure is used

in an optimal mechanism), but, with the imposition of the PIR constraints, only fully

uninformative information structures are used in optimal mechanisms. To illustrate this,

consider a simple example of bilateral trade.

Similar to the example in the introduction, suppose that there are three possible qualities

of the good: The good could be of low quality L, middle quality M , or high quality H with

equal probabilities. As before, both the principal and agent are unaware of the good’s

quality, the set of possible transfers equals the set of real numbers, and both the principal’s

utility and the agent’s utility are quasi-linear in the transfer between them. For allocation

y = 0 that corresponds to no trade, we normalize the payoffs such that u(ω, 0) = u(ω, 0)

for all feature ω ∈ {L,M,H}. Moreover, for allocation y = 1 that corresponds to trade, the

payoffs are

u(ω, 1) =


−3 ω = L;

−4 ω = M ;

−8 ω = H,

and v(ω, 1) =


1 ω = L;

5 ω = M ;

7 ω = H.

Thus, trade is efficient for the M quality good but inefficient for both the L quality good

and the H quality good. Here, with the class of incentive compatible and (agent) indi-

vidually rational mechanisms that utilize fully revealing information structures, the best

the principal can do is to have no trade occur with probability 1 and achieve an expected

payoff of 0. However, the principal can do strictly better than this and, indeed, extract

the full expected surplus possible under efficient trade with a particular mechanism whose
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information structure is neither fully uninformative nor fully revealing. More specifically,

an information structure in which, whenever the good has middle quality M , the principal

almost surely learns that the good has quality M with probability 1, and, whenever the

good has “extreme” quality L or H, the principal almost surely updates to the belief given

by their prior conditional on the good not being of quality M can be combined with a

trading protocol in which the principal unilaterally decides between executing full trade at

a price of 5, the agent’s willingness to pay for a quality M good, or no trade at a price

of 0. This would be incentive compatible, due to the principal’s expected payoff, ignoring

transfers, from trade after learning the good has “extreme” quality being −5.5, which would

lead them to reject trade at a price of 5, and individually rational, both for the agent and

for the principal at the interim stage.

A key aspect of this example is the dependence of the agent’s utility on the underlying

feature. In fact, for all IAPV quasilinear environments with transfers, in the case where

the outside option is also available for the principal as an allocation, i.e., o ∈ X, there is

a mechanism with a fully revealing mechanism that is optimal regardless of whether PIR

constraints are imposed.

Proposition 7. In all IAPV quasilinear environments with transfers, if o ∈ X, there is

a mechanism with a fully revealing information structure that is an optimal solution to

Program (OPT-IR) as well as Program (OPT).

The existence of such a mechanism follows from the existence of an optimal mechanism

that maximizes the principal’s ex-ante payoff, which automatically satisfies the principal’s

individual rationality constraints in IAPV quasilinear environments with transfers when

o ∈ X, given any information structure (Mylovanov and Tröger, 2014). That is, the optimal

solution for Program (OPT-IR) coincides with the optimal solution for Program (OPT).

Combining this with our Theorem 1 directly implies Proposition 7.

While our main result for IAPV environments extends to the setup in which PIR con-

straints are imposed, our main result for binary-feature environments does not extend. (For

details about how other results extend, see Appendix C.) In particular, there are private-

values environments outside of the quasi-linear family in which |Ω| = 2 and |Θ| = 1 such

that every optimal mechanism must have at least 3 signals induced with strictly positive

probability when principal interim individual rationality constraints are imposed. The fol-

lowing example provides such an environments.

Example 1. The principal’s type set Ω = {ω1, ω2} has precisely 2 elements, the agent’s

type set Θ = {θ} has precisely 1 element, and the allocation set X = {x1, x2, x3} has

precisely 3 elements. The prior distribution over the principal’s type λ ∈ ∆(Ω) is such that
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λ[ω1] = λ[ω2] = 1/2. The payoffs to the principal and the agent from the various allocations

are given in the following table. (The table is such that, for each (ω, θ, x) ∈ Ω × Θ × X,

the first number in the corresponding pair of numbers gives the principal’s payoff while the

second number gives the agent’s payoff.) □

ω1 x1 x2 x3

0, 1 −100,−10 −1, 100

ω2 x1 x2 x3

0, 1 100,−10 1, 100

Table 3: The payoffs for Example 1.

In this environment, the principal would like to have a high probability of x2 occurring

conditional on ω2. The issue is that the agent would obtain a fairly large disutility from such

a conditional outcome and would have to be compensated in order for their IR constraints

to be satisfied. It turns out that the optimal mechanism involves such a high probability of

x2 occurring conditional on ω2, and the optimal way for the agent to be compensated for

this is for there to be (1) conditional on ω1, strictly positive probabilities of x1 and x3 as

well as a 0 probability of x2, and (2) conditional on ω2, a 0 probability of x1 and a strictly

positive probability of x3. For there to be a strictly positive probability of x3 conditional

on ω1, the expected utility of the principal conditional on ω1 must be strictly negative, so,

in every optimal mechanism, there must be an interim belief that is induced with strictly

positive probability by pooling ω1 and ω2. However, every optimal mechanism must be

such that, for each feature ω ∈ {ω1, ω2}, there must be a strictly positive probability of the

degenerate belief δω being induced conditional on ω, owing to the need for x1 to occur with

strictly positive probability conditional on ω1 and 0 probability conditional on ω2 and x2

to occur with 0 probability conditional on ω1 and a strictly positive probability conditional

on ω2. The formal details are given in Appendix C.1.

6 Discussion

In this paper, we provide sufficient conditions for environments both with and without

quasi-linear transfers, delineating scenarios where full learning proves either optimal or

strictly suboptimal for the principal. This serves as an initial exploration into endogenous

principal learning problems where the principal lacks the ability to commit to how acquired

information is adopted in the mechanism. Our findings also open numerous avenues for

future research.

First, in environments where full learning is strictly suboptimal, a natural question

arises: What is the optimal information structure for the principal? Our results illustrate
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that this structure can be highly intricate, and the number of signals can be strictly larger

than the number of states. It is intriguing to investigate whether there exists an upper bound

on the maximum number of signals for the optimal information structure and whether we

can uncover any intuitive economic properties of it.

In our paper, our primary focus has been on environments characterized by pure adverse

selection. However, in numerous real-world scenarios, moral hazard concerns also play a

significant role. For instance, consider a situation where a firm contracts an agent whose

efforts are indispensable for the success of a project. In such cases, the firm may opt to

conduct private investigations into the project’s profitability before finalizing the contract.

This introduces another layer of complexity as the agent’s efforts may not be perfectly

observable by the firm. Thus, understanding the interplay between endogenous principal

learning and moral hazard is crucial for comprehensively analyzing principal-agent relation-

ships in various economic settings. This warrants further exploration which is beyond the

scope of our current study.
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Crémer, J. and McLean, R. P. (1988). Full extraction of the surplus in bayesian and

dominant strategy auctions. Econometrica, 56(6):1247–1257.

Daskalakis, C., Papadimitriou, C., and Tzamos, C. (2016). Does information revelation

improve revenue? In Proceedings of the 2016 ACM Conference on Economics and Com-

putation, pages 233–250.

Deimen, I. and Szalay, D. o. (2019). Delegated expertise, authority, and communication.

American Economic Review, 109(4):1349–1374.

Deng, Y., Hartline, J., Mao, J., and Sivan, B. (2021). Welfare-maximizing guaranteed

dashboard mechanisms. In Proceedings of the 22nd ACM Conference on Economics and

Computation, pages 370–370.

Ebrahim-Khanjari, N., Hopp, W., and Iravani, S. M. (2012). Trust and information sharing

in supply chains. Production and Operations Management, 21(3):444–464.
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A Omitted Analysis for Section 3

A.1 Theorem 1

Since the feature spaces are finite, let Ω = {ω1, . . . , ωn}. Let fi be the probability of fea-

ture ωi given marginal distribution FΩ. Consider an imaginary market allocation problem

withm resources where each resource xj has supply qj . We assume that
∑

j∈[m] qj = 1. Con-

sider a distribution scheme zij such that
∑

j∈[n] zij = fi and
∑

i∈[n] zij = qj . Intuitively, zij

is the demand from feature ωi for resource xj . The principal’s value for resource xj given

feature ωi is vij . The principal’s utility is additive across all resources and each feature ωi

must consume demand equals fi.
12 Let

z∗ = argmax
z

∑
i∈[n],j∈[m]

vij · zij (Ψ)

s.t.
∑
j∈[m]

zij = fi, ∀i ∈ [n],

∑
i∈[n]

zij = qj , ∀j ∈ [m],

zij ≥ 0, ∀i ∈ [n], j ∈ [m].

In this market, the efficient allocation assigns resource xj to feature ωi with probability
z∗ij
fi
.

Lemma 3. There exists a price vector {pi}i∈[n] such that the efficient allocation can be

implemented incentive compatibly.

Proof. Note the the optimization program (Ψ) is a linear program. The Lagrange dual of

this program is

L = min
λ,β

max
z

∑
i∈[n],j∈[m]

vij · zij +
∑
i∈[n]

λi

fi −
∑
j∈[m]

zij

+
∑
j∈[m]

βj

qj −
∑
i∈[n]

zij


s.t. zij ≥ 0, ∀i ∈ [n], j ∈ [m].

By reordering the terms, the Lagrange objective is

L(λ, β, z) =
∑

i∈[n],j∈[m]

(vij − λi − βj)zij +
∑
i∈[n]

fiλi +
∑
j∈[m]

qjβj .

12The restriction that each feature must consume demand exactly equals fi is because the values
vij may be negative for some i, j. This condition can be relaxed if all values are non-negative.
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By the optimality condition and complementary slackness, vij−λi−βj ≤ 0 and the equality

holds if zij > 0 for any i, j. To interpret this condition, the Lagrange parameter βj can

be viewed as the per-unit price for resource j and λi is the maximum per-unit utility of

feature ωi from purchasing the resource. That is, feature ωi’s expected utility is maximized

by z∗ given price βj . Consider the price pi =
1
fi

∑
j∈[m] z

∗
ijβij . Each feature ωi’s utility for

deviating to ω′
i is

∑
j∈[m]

vij ·
z∗i′j
fi

− 1

fi

∑
j∈[m]

z∗i′jβi′j

≤ 1

fi

∑
j∈[m]

z∗ijλi =
∑
j∈[m]

vij ·
z∗ij
fi

− 1

fi

∑
j∈[m]

z∗ijβij

Therefore, given price vector {pi}, each feature will have incentive to report truthfully. ■

Now we revisit our original problem. For any information structure σ and any mecha-

nism M , fixing any agent’s type θ, let xθ
j be the distribution over outcome in mechanism M

given feature ωj and type θ. xθ
j can be viewed as resource j in the imaginary problem

where the supply of resource j is fj . Consider the fully revealing information structure and

another mechanism M̂ that redistributes the resource efficiently for the principal given each

agent’s type. By Lemma 3, there exists a transfer profile {pθi }i∈[n] such that the efficient

allocation can be implemented incentive compatibly for all principal’s types, which equals

the underlying features given fully revealing information structures. Moreover, by shifting

the transfers by a constant (depending on the agent’s type θ) for all principal’s types, we

can also ensure that the expected transfer of the agent are the same in both mechanisms.

Since mechanism M̂ implements the same distribution over outcome for each agent’s type,

the incentive constraints and the individually ration constraints are satisfied for the agent.

Finally, since the equilibrium welfare of mechanism M̂ is weakly higher than that for mech-

anism M , and the agent’s expected utility remains unchanged, the principal’s expected

utility weakly increases. Therefore, revealing full information is optimal for the principal.

A.2 Agent Interdependent Values

To prove Proposition 2, we introduce the following notations. For any quantile q ∈ [0, 1],

let ω(q) ≜ infω′ {FΩ(ω
′) ≥ 1− q} be the feature that corresponds to quantile q. Let H(q) =∫ q

0 (c(ω(z)) − ω(z)) dz, and let H(q) be the convex hull of H. Let I be the set of intervals

such that H(q) ̸= H(q). Note that I = ∅ if c(ω)− ω is non-increasing in ω for all ω in the

support of FΩ and I = {Ω} if c(ω)−ω is increasing in ω for all ω in the support of FΩ. Let
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m = EFΩ
[ω] and mc = EFΩ

[c(ω)− ω]. The proof of Proposition 2 relies on the following

lemma.

Lemma 4. In the lemon’s problem, fixing the utility function of both the principal and

the agent and the distribution over unknown features, there exists a mechanism with fully

revealing information structure that is optimal for each agent’s type distribution if and only

if there exists quantile q as well as a measure τ such that

• τ(z) ≤ FΩ(z) for any z ⊆ Ω and τ(Ω) = q;

•
∫
Ω ω dτ(ω) ≤ q ·m;

•
∫
Ω(c(ω)− ω) dτ(ω) > H(1)−H(q).

Essentially, τ is a sub measure of FΩ with total probability q. This lemma shows that

by pooling features given measure τ and selling the item to the agent given those features,

there exists a type distribution of the agent, which as illustrated in the following proof is

a point mass distribution on value H ′(q), such that the principal receives strictly higher

expected payoff compared to any mechanism with fully revealing information structures.

Proof of Lemma 4. We first characterize the ex ante optimal mechanism of the principal

given any fixed information structure. Note that in this setting, it is without loss to focus

on the case that the principal’s type is her posterior mean of the features under the given

information structure, and hence to simplify the exposition in this characterization, we also

use ω to denote the principal’s type. By Envelope Theorem, the agent’s interim utility in

an incentive compatible mechanism is

V (θ) = V (0) +

∫ θ

0
y(z) dz

and hence by setting V (0) = 0. the expected payoff of the principal is

E(ω,θ)∼F

[
ω · (1− y(ω, θ)) + (c(ω) + θ) · y(ω, θ)− 1− FΘ(θ)

fΘ(θ)
· y(ω, θ)

]
= Eω∼FΩ

[ω] +E(ω,θ)∼F [(φ(ω) + ϕ(θ)) · y(ω, θ)]

where φ(ω) = c(ω)− ω and ϕ(θ) = θ − 1−FΘ(θ)
fΘ(θ) .13

13When the agent’s value distribution is discrete, the density function does not exist and the above
virtual value function is not well defined. However, one can define the virtual value function as
the derivative on the revenue curve (Bulow and Roberts, 1989), and the same characterization
extends.
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If φ(ω) is monotone non-increasing in ω and ϕ(θ) is monotone non-decreasing in θ, the

optimal mechanism can be implemented by allocation rule where y(ω, θ) = 1 if and only if

φ(ω) + ϕ(θ) ≥ 0. Such allocation rule can be implemented in an incentive compatible way

because it is weakly decreasing in ω and weakly increasing in θ.

However, if those monotonicity conditions are violated, ironing is necessary to character-

ize the optimal mechanism (Myerson, 1981; Bulow and Roberts, 1989). Specifically, recall

H(q) is the convex hull of the integration of the surplus function φ(ω) in quantile space.

Let R(q) = q · θ(q) and let R̄(q) be its concave hull. The ironed surplus of the principal is

φ(ω) = H ′(q(ω)) and the ironed virtual value of the agent is ϕ̄(θ) = R̄′(q(θ)). The expected

payoff of the principal of any incentive compatible mechanism is upper bounded by

Eω∼FΩ
[ω] +E(ω,θ)∼F

[
(φ(ω) + ϕ̄(θ)) · y(ω, θ)

]
and the upper bound is attained under the optimal mechanism. Next we prove the lemma.

If: Consider the case where the agent’s distribution is a point mass at type θ = H ′(q).

In this case, under full information, the optimal allocation is y(ω, θ) = 1 if and only if

FΩ(ω) ≥ 1− q. The principal’s ex ante payoff under this mechanism is

Eω∼FΩ
[ω] +E(ω,θ)∼F

[
(φ(ω) + θ) · 1 [FΩ(ω) ≥ 1− q]

]
= Eω∼FΩ

[ω] +H(1)−H(q) + θ · q.

However, consider a partially informative information structure with binary signal {0, 1}
such that the principal receives signal 0 given the sub-measure τ and receives signal 1

otherwise. Moreover, consider an allocation rule that allocates the item if and only if the

principal’s signal is 0. Note that
∫
Ω ω dτ(ω) ≤ q ·m implies that the posterior mean given

signal 0 is at most m, and hence the posterior mean given signal 1 is at least m. Therefore,

such allocation is non-increasing in principal’s posterior mean, and hence this allocation

rule can be implemented as an incentive compatible mechanism. Moreover, the ex ante

payoff of the principal under this mechanism when receiving partial information is

Eω∼FΩ
[ω] +

∫
Ω
(c(ω)− ω) dτ(ω) + θ · q,

which is strictly higher than the ex ante payoff under full information according to the

assumption in Lemma 4.
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Only if: We prove this by contradiction. For any information structure (S, σ), let Hσ(q)

be the convex hull of the principal’s integration of surplus under information structure σ.

It is easy to verify that

Hσ(1) = H(1) = mc and Hσ(q) ≥ H(q),∀q.

Consider any mechanism M = (S, σ,y, t), let qMθ be the probability the item is allocated

to the agent with type θ in mechanism M . The ex ante payoff of the principal under this

mechanism is

Eω∼FΩ
[ω] +E(ω,θ)∼F

[
(φ(ω) + ϕ̄(θ)) · y(ω, θ)

]
= Eω∼FΩ

[ω] +Eθ∼FΘ

[
ϕ̄(θ) · qMθ +Hσ(1)−Hσ(qMθ )

]
Now consider the mechanism M̂ with fully revealing information structure which only

allocates the item if and only if FΩ(ω) ≤ 1− qMθ . Since this allocation is non-decreasing in

principal’s type, it also be implemented as an incentive compatible mechanism under full

information structure. The ex ante payoff of the principal is

Eω∼FΩ
[ω] +Eθ∼FΘ

[
ϕ̄(θ) · qMθ +H(1)−H(qMθ )

]
which is weakly higher than the ex ante payoff under mechanism M since Hσ(q) ≥ H(q)

for all q. ■

Proof of Proposition 2. For the “if” direction, if condition (1) is satisfied, for any quantile q

and any measure τ with τ(Ω) = q such that τ(z) ≤ FΩ(z) for any z ⊆ Ω and
∫
Ω ω dτ(ω) ≤

q ·m, the expected surplus
∫
Ω(c(ω)−ω) dτ(ω) is maximized by greedily assign probabilities

on low types. The maximum surplus is thereforeH(1)−H(q). By Lemma 4, full information

is optimal. If condition (2) is satisfied, H is linear function, and by combining it with the

linearity of c(ω)−ω, we have that any τ with
∫
Ω ω dτ(ω) ≤ q·m satisfies

∫
Ω(c(ω)−ω) dτ(ω) ≤

H(1)−H(q). Again by Lemma 4, full information is optimal.

For the “only if” direction, suppose both conditions are violated. We first consider the

case I ̸= ∅ and I ̸= {Ω}. In this case, there exists I ∈ I such that I ̸= Ω. Let ω be the

lowest type in I and let ω̄ be the highest type in I. Let zI be the average of c(ω) − ω for

ω ∈ I given the prior distribution. Since I ̸= Ω, there exists a type ω ∈ Ω\I. We first

consider the case ω < ω and the case where ω > ω̄ can be proved analogously. In this case,

there exists ω̂ ∈ Ω such that c(ω̂)− ω̂ > zI . Letting Ω0 = {ω : ω < ω}, consider a measure
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τ such that for any z ⊆ Ω,

τ(z) =

FΩ(z ∩ Ω0) ω̂ ̸∈ z

FΩ(z ∩ Ω0) + ϵ ω̂ ∈ z.

Let q = τ(Ω). It is easy to verify that with sufficiently small ϵ > 0, τ(z) ≤ FΩ(z) for any

z ⊆ Ω and
∫
Ω ω dτ(ω) ≤ q ·m. Moreover,∫

Ω
(c(ω)− ω) dτ(ω) =

∫
Ω0

(c(ω)− ω) dτ(ω) + ϵ · (c(ω̂)− ω̂)

>

∫
Ω0

(c(ω)− ω) dFΩ(ω) + ϵ · zI = H(1)−H(q).

Therefore, measure τ satisfies the conditions in Lemma 4 and hence full information is

strictly suboptimal.

Finally, suppose I = Ω. Since c(ω)− ω is not linear in ω, it is easy to show that there

exists a probability measure τ on Ω such that
∫
Ω ω dτ(ω) ≤ m and

∫
Ω(c(ω)−ω) dτ(ω) > mc.

Note that I = Ω implies that H is a linear function and H(1) − H(0) = mc. Therefore,

there exists a sufficiently small probability q > 0 such that the probability measure q · τ
satisfies the conditions in Lemma 4, and hence full information is strictly suboptimal. ■

A.3 Correlated Types

The proof of Lemma 1 relies on the following assortative inequality.

Lemma 5. For any distribution F supported on [0, 1] and any increasing sequence rs for

s ∈ [0, 1], we have

Es∼F [s · rs]
Es∼F [s]

≥ Es∼F [(1− s) · rs]
Es∼F [1− s]

.

Proof. We define two new probability measures F+, F− on [0, 1] such that

F+(s) =

∫ s
0 z dF (z)

Ez∼F [z]
and F−(s) =

∫ s
0 (1− z) dF (z)

Ez∼F [1− z]
, ∀s ∈ [0, 1].

The inequality in Lemma 5 is equivalent to the statement that the expectation of rs is

weakly larger given measure F+ compared to F−. Note that it is sufficient to show that F+

first order stochastically dominates F−, i.e., F+(s) ≤ F−(s) for all s ∈ [0, 1].
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Note that for any s ∈ [0, 1], we have

F−(s) =

∫ s
0 (1− z) dF (z)

Ez∼F [1− z]
=

F (s)−
∫ s
0 z dF (z)

1−Ez∼F [z]
.

By rearranging the terms, it is easy to verify that F+(s) ≤ F−(s) is equivalent to∫ s

0
z dF (z) ≤ F (s) ·Ez∼F [z] .

The above inequality holds since
∫ s
0 z dF (z) = F (s) · Ez∼F [z | z ≤ s] and the fact that

Ez∼F [z | z ≤ s] ≤ Ez∼F [z] for any s ∈ [0, 1]. ■

Proof of Lemma 1. Since the unknown features are payoff irrelevant for the principal, and

we have assumed private values in this environment, we denote u(y) as the principal’s

value given any allocation y ∈ Y and u(y) as the expected value given a distribution over

allocations.

When agent has binary type {θ0, θ1}, Let q1 be the marginal probability of type θ1

and let q0 = 1 − q1. For any mechanism M = (S, σ,y, t), the signal, or equivalently the

principal’s type, can be denoted as a real number in [0, 1], representing the probability

the agent’s type is θ1 conditional on the principal’s type. Since mechanism M is incentive

compatible for the principal and the principal’s payoff does not depend on the allocation, it

is easy to verify that u(y(s, θ0))+ t(s, θ0) is weakly decreasing in s and u(y(s, θ1))+ t(s, θ1)

is weakly increasing in s.

Now consider another mechanism M̂ = (S, σ,y, t̂) such that for any s ∈ S,

t̂(s, θ0) = t̂0 − u(y(s, θ0)), and t̂(s, θ1) = t̂1 − u(y(s, θ1))

where

t̂0 ≜
1

q0
·Eσ[(1− s) · (u(y(s, θ0)) + t(s, θ0)) | θ0] ,

t̂1 ≜
1

q1
·Eσ[s · (u(y(s, θ1)) + t(s, θ1)) | θ1] .

Intuitively, u(y(s, θ)) + t(s, θ) is the utility of the principal after accounting for the cost of

allocation. Compared to the original mechanism M , mechanism M̂ adjusts the transfers

such that the realized utility of the agent is a constant regardless of the reported signal s

and the expected transfer of each agent type is not affected. Therefore, the incentives of

the principal is completely eliminated in mechanism M̂ . Moreover, it is easy to verify that

mechanism M̂ is individual rational for the agent and the expected revenue for the principal
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remains unchanged. Next it is sufficient to verify that M̂ is incentive compatible for the

agent.

Let V (θ, θ′;M) be the expected utility of agent type θ for reporting θ′ under mecha-

nism M . The expected difference in utility loss for misreporting the type from θ1 to θ0

is

V (θ1, θ1;M)− V (θ1, θ0;M)− (V (θ1, θ1; M̂)− V (θ1, θ0; M̂))

= − 1

q1
·Eσ[s · (u(y(s, θ0)) + t(s, θ0)) | θ1] + t̂0 ≤ 0,

where the inequality holds by applying Lemma 5 and the fact that u(y(s, θ0)) + t(s, θ0)

is weakly decreasing in s. Therefore, the IC constraint for misreporting from θ1 to θ0 in

mechanism M implies the IC constraint for misreporting from θ1 to θ0 in mechanism M̂ .

Similarly, the IC constraint for misreporting from θ1 to θ0 in mechanism M implies the IC

constraint for misreporting from θ1 to θ0 in mechanism M̂ . Combining the two observations

above, mechanism M̂ is also incentive compatible for the agent. ■

Proof of Proposition 3. By Lemma 1, there exists an optimal mechanism M = (S, σ,y, t)

such that the utility of the principal does not depend on their type. In this case, there exists

another mechanism M̂ = (Ŝ, σ̂, ŷ, t̂) with fully revealing information structure (Ŝ, σ̂) and

allocation and transfer rule (ŷ, t̂) that first garbles the reported signal ŝ ∈ Ŝ according to σ,

and then apply y, t on the garbled information. The constructed mechanism M̂ is incentive

compatible and individually rational for the agent, and generate the same expected revenue

as M since the distribution over outcomes is not changed in both settings. Moreover, since

the utility of the principal does not depend on their report, the principal’s incentives are

also preserved. ■

Proof of Corollary 1. Suppose by contradiction there exists an optimal mechanism that

extracts full surplus. By Lemma 1, there exists an optimal mechanism with transfers

independent from the principal’s report that extracts full surplus. In particular, in order to

extract full surplus, the allocation is 1 regardless of the report from both the principal and

the agent, and thus the transfer of the agent always equals his value for the item. However,

in this case, the mechanism is not incentive compatible for the agent since type θ1 would

like to deviate the report to θ0, a contradiction. ■

Proof of Proposition 4. Consider the principal-agent instance with the joint distribution

illustrated in Table 1. The payoff maximizing mechanism with fully revealing information

structure can be solved by a simple linear program. In particular, the optimal mechanism

sells the item to the agent when his type is θ = 0.9, or when θ = 0.6 and ω = 0.2. Moreover,
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the transfers in the optimal mechanism takes the form illustrated in Table 4. It is easy to

verify that the expected payoff of the principal is 0.204 under full information.

ω\θ 0.6 0.9
0.2 0.656 0.572
0.5 -0.024 0.932
0.8 -0.024 0.932

Table 4: Transfer function.

Note that in fact in this mechanism, both features 0.5 and 0.8 are treated equally. A

feasible choice of the principal is to pool both features 0.5 and 0.8 to alleviate the incentive

constraints of the principal. The allocation and transfer functions of an feasible mechanism

for pooling 0.5 and 0.8 is illustrated in Table 5. The expected revenue of this mechanism is

0.24 > 0.204. ■

ω\θ 0.6 0.9
0.2 1 1

0.5 or 0.8 0 2
3

(a) Allocation function.

ω\θ 0.6 0.9
0.2 1.44 0.04

0.5 or 0.8 -0.36 88
75

(b) Transfer function.

Table 5: Allocation and transfer function under pooling information.

A.4 Proof of Proposition 5

Lemma 6. If |Θ| = 1, then, for every incentive compatible and individually rational mech-

anism (S, σ,M) that satisfies |S| ∈ N, there is an incentive compatible and individually

rational mechanism (S̃, s̃,M̃) that satisfies |S̃| ≤ |Ω| and gives the principal a weakly higher

expected payoff than (S, σ,M).

Proof. Let λΩ ∈ ∆(Ω) denote the prior probability distribution over the principal’s type

and θ denote the sole element of Θ. Consider an arbitrary incentive compatible and

individually rational mechanism (S, σ,M) that satisfies |S| ∈ N. For every s ∈ S,

let p[s] =
∑

ω∈Ω λΩ[ω]σ(ω)[s] denote the ex-ante probability that signal s occurs un-

der signal structure (S, σ), let λ(S,σ)(s) ∈ ∆(Ω) denote the posterior belief of the prin-

cipal upon observing signal s with information structure (S, σ), and let U(S,σ,M)(s) =

EM(s,θ)[Eω∼λ(S,σ)(s)[u(ω, θ, x)] + t] and V(S,σ,M)(s) = EM(s,θ)[Eω∼λ(S,σ)(s)[v(ω, θ, x)] − t] de-

note the respective expected utilities of the principal and the agent under the mecha-

nism (S, σ,M) conditional upon signal s. Observe that (1)
∑

s∈S p[s]λ(S,σ)(s) = λΩ, (2)
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The principal’s expected utility from the mechanism (S, σ,M), denoted by U(S, σ,M),

must satisfy U(S, σ,M) =
∑

s∈S p[s]U(S,σ,M)(s), and (3) The agent’s expected util-

ity from the mechanism (S, σ,M), denoted by V (S, σ,M), must satisfy V (S, σ,M) =∑
s∈S p[s]V(S,σ,M)(s). By standard arguments involving Caratheodory’s Theorem, there

exists an N ∈ N, f : {1, ..., N} → [0, 1], g : {1, ..., N} × {1, ..., |Ω|} → (0, 1], and

h : {1, ..., N}×{1, ..., |Ω|} → S such that (1)
∑

n∈{1,...,N} f(n) = 1, (2) For all n ∈ {1, ..., N},∑
m∈{1,...,|Ω|} g(n,m) = 1 and

∑
m∈{1,...,|Ω|} g(n,m)λ(S,σ)(h(n,m)) = λΩ, and (3) For all

s ∈ S,
∑

n∈{1,...,N} f(n)
∑

m∈{1,...,|Ω|} g(n,m)1s(h(n,m)) = p[s]. Thus, it follows that

U(S, σ,M) + V (S, σ,M) =
∑
s∈S

p[s]U(S,σ,M)(s) +
∑
s∈S

p[s]V(S,σ,M)(s)

=
∑
s∈S

p[s](U(S,σ,M)(s) + V(S,σ,M)(s))

=
∑
s∈S

∑
n∈{1,...,N}

f(n)
∑

m∈{1,...,|Ω|}

g(n,m)1s(h(n,m))(U(S,σ,M)(s) + V(S,σ,M)(s))

=
∑

n∈{1,...,N}

f(n)
∑

m∈{1,...,|Ω|}

g(n,m)(U(S,σ,M)(h(n,m)) + V(S,σ,M)(h(n,m))).

Hence, there must be some n ∈ {1, ..., N} such that∑
m∈{1,...,|Ω|} g(n,m)(U(S,σ,M)(h(n,m)) + V(S,σ,M)(h(n,m))) ≥ U(S, σ,M) + V (S, σ,M).

Fix such an n ∈ {1, ..., N}. For each (s, θ) ∈ S×Θ, let M̂(s, θ) ∈ ∆(X×R) denote the prob-
ability distribution that is obtained from the probability distributionM(s, θ) ∈ ∆(X×R) by
shifting t to t+

∑
m∈{1,...,|Ω|} g(n,m)V(S,σ,M)(h(n,m))−V (S, σ,M) for each (x, t) ∈ X×R.

Now, consider the mechanism (S̃, σ̃,M̃) in which (1) S̃ = {1, ..., |Ω|}, (2) s̃ : Ω → S̃

is given by σ̃(ω)[s] = g(n, s)h(n, s)[ω]/(
∑

s∈S̃ g(n, s)h(n, s)[ω]) for all s ∈ S̃, and (3)

M̃ : S̃×Θ → ∆(X ×R) is given by M̃(s, θ) = M̂(h(n, s), θ) for all (s, θ) ∈ S̃×Θ. Observe

that, for each s ∈ S̃, the ex-ante probability that signal s occurs under signal structure (S̃, σ̃)

is g(n, s) and the posterior belief of the principal upon observing signal s with information

structure (S̃, σ̃) is h(n, s). Furthermore, the principal’s expected utility under (S̃, σ̃,M̃),

denoted by U(S̃, σ̃,M̃), satisfies U(S̃, σ̃,M̃) =
∑

s∈{1,...,|Ω|} g(n, s)U(S,σ,M)(h(n, s)) +∑
s∈{1,...,|Ω|} g(n, s)V(S,σ,M)(h(n, s)) − V (S, σ,M) ≥ U(S, σ,M). Additionally, because of

the incentive compatibility of (S, σ,M), it follows that (S̃, σ̃,M̃) is incentive compatible

for the principal. Moreover, as the expected payoff of the agent under (S̃, σ̃,M̃) equals

their expected utility under (S, σ,M) and (S, σ,M) is individually rational for the agent,

(S̃, σ̃,M̃) must be individually rational for the agent. ■

Proof of Proposition 5. Throughout this argument, for every mechanism (S, σ,M), let

U(S, σ,M) denote the expected payoff of the principal under mechanism (S, σ,M) and
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V (S, σ,M) denote the expected payoff of the agent under mechanism (S, σ,M).

Let (S∗, σ∗,M∗) be an optimal incentive compatible and individually rational mech-

anism and let θ denote the sole element of Θ. Standard arguments show that, for all

n ∈ N, there is an incentive compatible mechanism (Sn, σn,Mn) such that |Sn| ∈ N and

U(Sn, σn,Mn) + V (Sn, σn,Mn) > U(S∗, σ∗,M∗) + V (S∗, σ∗,M∗)− 1/n. This mechanism

can be modified by uniformly shifting transfers to obtain a mechanism (Ŝn, σ̂n,M̂n) that is

incentive compatible, individually rational, and satisfies U(Ŝn, σ̂n,M̂n) > U(S∗, σ∗,M∗)−
1/n. By Lemma 6, for all n ∈ N, it must be that there exists an incentive com-

patible and individually rational mechanism (S̃n, σ̃n,M̃n) such that |S̃n| ≤ |Ω| and

U(S̃n, σ̃n,M̃n) ≥ U(S∗, σ∗,M∗) − 1/n. Without loss of generality, suppose that, for all

n ∈ N, |S̃n| = {1, ..., |S̃n|}. Furthermore, since an appropriate subsequence could be iden-

tified, it is without loss of generality to assume that there is some M ∈ N such that (1)

M ≤ |Ω| and S̃n = {1, ...,M} for all n ∈ N, (2) limn→∞ s̃n(ω) ∈ ∆({1, ...,M}) exists for

all ω ∈ Ω, and (3) limn→∞Mn(s, θ) ∈ ∆(X × R) exists for all (s, θ) ∈ {1, ...,M} × Θ.

Consider the mechanism (S̃∗, σ̃∗,M̃∗) given by S̃∗ = {1, ...,M}, σ̃∗(ω) = limn→∞ σ̃n(ω) for

all ω ∈ Ω, and M̃∗(s, θ) = limn→∞ M̃n(s, θ) for all (s, θ) ∈ S ×Θ. By continuity, since, for

each n ∈ N, (S̃n, σ̃n,M̃n) is incentive compatible and individually rational, (S̃∗, σ̃∗,M̃∗)

itself must be incentive compatible and individually rational. Moreover, by continuity,

since U(S∗, σ∗,M∗) − 1/n < U(S̃n, σ̃n,M̃n) ≤ U(S∗, σ∗,M∗) for all n ∈ N, it follows

that U(S̃∗, σ̃∗,M̃∗) = limn→∞ U(S̃n, σ̃n,M̃n) = U(S∗, σ∗,M∗), so (S̃∗, σ̃∗,M̃∗) must be

optimal. Finally, observe that, by construction, |S̃∗| ≤ |Ω|. ■

B Omitted Analysis for Section 4

B.1 Binary Features

Proof of Lemma 2. For any feasible mechanism M = (S, σ,x), consider another mechanism

M̃ = (Ω, σ̃, x̃) with fully revealing information structure in which σ̃(ω) = δω for all ω ∈ Ω.

Moreover, the allocation rule x̃ : Ω×Θ → ∆(X) is given by

x̃(ω, θ) = Es∼σ(ω)[x(s, θ)] .

for all (ω, θ) ∈ Ω × Θ. By the construction of mechanism M̃ , both mechanism M and M̃

induce the same distribution over outcomes for all (ω, θ) ∈ Ω×Θ.

For every ω ∈ Ω, let FΘ(ω) ∈ ∆(Θ) denote the conditional distribution over the

agent’stype when the principal’stype is ω. Likewise, for every θ ∈ Θ, let FΩ(θ) ∈ ∆(Ω)

denote the conditional distribution over the principal’stype when the agent’stype is θ.
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We now establish agent incentive compatibility and individual rationality. Observe that,

for any θ, θ′ ∈ Θ, by the construction of mechanism M̃ , the interim utility of type θ for

reporting θ′ is

V(θ′, θ; M̃) ≜ Eω∼FΩ(θ)

[
Ex∼x̃(ω,θ′)[V (ω, θ, x)]

]
= Eω∼FΩ(θ)

[
Es∼σ(ω)

[
Ex∼x(s,θ′)[V (ω, θ, x)]

]]
= V(θ′, θ;M).

Let V(θ; M̃) ≜ V(θ, θ; M̃) be the interim utility of the agent for truthful reporting. Since

mechanism M is incentive compatible and individually rational for the agent, it follows that

V(θ;M) ≥ max
{
V(θ′, θ;M), 0

}
for all θ, θ′ ∈ Θ. Therefore, we have

V(θ; M̃) ≥ max
{
V(θ′, θ; M̃), 0

}
for all θ, θ′ ∈ Θ. Hence mechanism M̃ is also incentive compatible and individually rational

for the agent.

We finally establish principal incentive compatibility. Suppose without loss of generality

that Ω = {0, 1} and S = [0, 1]. Moreover, for any s ∈ S, the posterior belief of the principal

for receiving signal s is (1− s)δ0 + sδ1. For any ω ∈ Ω, let

Uω(s;M) ≜ Eθ∼FΘ(ω)

[
Ex∼x(s,θ)[U(ω, θ, x)]

]
be the interim utility of the principal in mechanism M condition on the true feature being

ω. Since mechanism M is principal incentive compatible, it follows that, for all s, s′ ∈ S,

(1− s) · U0(s;M) + s · U1(s;M) ≥ (1− s) · U0(s
′;M) + s · U1(s

′;M).

By standard arguments, for all s, s′ ∈ S such that s ≥ s′,

U1(s;M) ≥ U1(s
′;M) and U0(s;M) ≤ U0(s

′;M).

Let the interim utility of the principal in mechanism M̃ for reporting ω′ ∈ Ω be

U(ω′, ω; M̃) ≜ Es∼σ(ω′)

[
Eθ∼FΘ(ω)

[
Ex∼x(s,θ)[U(ω, θ, x)]

]]
= Es∼σ(ω′)[Uω(s;M)]

and let U(ω; M̃) ≜ U(ω, ω; M̃). Recall that σ(ω) is the distribution over signals given

information structure σ when the true feature is ω. In binary feature space, we know that
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σ(1) first order stochastically dominates σ(0), which further implies that

U(1; M̃) = Es∼σ(1)[U1(s;M)] ≥ Es∼σ(0)[U1(s;M)] = U(0, 1; M̃),

U(0; M̃) = Es∼σ(0)[U0(s;M)] ≥ Es∼σ(1)[U0(s;M)] = U(1, 0; M̃).

Thus, mechanism M̃ is also incentive compatible for the principal. ■

B.2 Suboptimality of Fully Revealing Information Structures

We prove Proposition 6 by directly characterizing the optimal mechanism in this setting.

For any threshold feature ω and probability p, we define the information structure (S, σω,p)

with S = {0, 1} as

σω,p(ω
′) =


δ1 d(ω′) > d(ω)

p · δ1 + (1− p) · δ0 d(ω′) = d(ω)

δ0 d(ω′) < d(ω).

Let ω be the feature that minimizes d(ω) subject to the constraints that there exists p ∈ [0, 1]

such that Eσω,p [d(ω) | s = 1] ≥ 0. Moreover, let p ∈ [0, 1] be the maximum probability such

that the above inequality holds. Intuitively, ω is the threshold feature value and p is

the threshold probability such that the principal weakly prefers allocation 1 over 0 when

receiving a signal that pools features with payoff differences above ω.

If Prσω,p [s = 1] < −V (θ,0)
V (θ,1)−V (θ,0) , let ω

∗ = ω and p∗ = 1. Otherwise, let ω∗ be the feature

that maximizes d(ω∗) subject to the constraints that d(ω) ≤ d(ω∗) < 0 and there exists

p ∈ [0, 1] such that Prσω∗,p [s = 1] ≥ −V (θ,0)
V (θ,1)−V (θ,0) . Moreover, let p∗ ∈ [0, 1] be the minimum

probability such that the above inequality holds. Essentially, ω∗ and p∗ provides incentives

for the agent to accept the mechanism given information structure σω∗,p∗ . Let

p̂ =
1

1−Prσω∗,p∗ [s = 1]
·max

{
0,

−V (θ, 0)

V (θ, 1)− V (θ, 0)
−Prσω∗,p∗ [s = 1]

}
. (1)

Lemma 7. In independent private value environments with degenerate agent type and bi-

nary allocations, mechanism M = (S, σω∗,p∗ ,x) with S = X = {0, 1} is optimal if

• x(s, θ) = o for all s ∈ S when E[U(ω, 1)]− (1− p̂) ·Eσω∗,p∗ [d(ω) · 1 [s = 0]] < 0;

• x(1, θ) = 1 with probability 1 and x(0, θ) = 1 with probability p̂ when E[U(ω, 1)] −
(1− p̂) ·Eσω∗,p∗ [d(ω) · 1 [s = 0]] ≥ 0.
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Essentially, Lemma 7 implies that if the principal wants to incentivize the agent to par-

ticipate, the information structure in the optimal mechanism is (S, σω∗,p∗) with S = {0, 1}.
Moreover, the item may be allocated to the agent with strictly positive probability even if

the principal’s received signal is 0 in order to satisfies the agent’s individual rationality con-

straint. The expected payoff of this mechanism is E[U(ω, 1)]−(1−p̂)·Eσω∗,p∗ [d(ω) · 1 [s = 0]]

and hence the principal wants to incentivize the agent to participate if and only if the above

term is non-negative.

Proof of Lemma 7. We first characterize the optimal mechanism when the agent is incen-

tivized to accept the mechanism.

In this binary allocation model, for any feasible mechanism M = (S, σ,x), let S0 =

{s ∈ S : Eσ[d(ω) | s] < 0} and let S1 = {s ∈ S : Eσ[d(ω) | s] ≥ 0}. That is, principal with

signal in S0 would strictly prefer allocation 0 to 1, and principal with signal in S1 would

weakly prefer allocation 1 to 0. Moreover, for any feasible mechanism M , principal with

signal s would strictly prefer the report with lowest probability allocation 1 is chosen if

s ∈ S0 and weakly prefer the report with highest probability allocation 1 is chosen if s ∈ S1.

Note that it is without loss to maximize the probability allocation 1 is chosen, such that

x(1, θ) = 1, when the principal is indifferent since it both improves the principal’s expected

payoff and alleviates the agent’s individual rationality constraint. Therefore, it is without

loss to function on feasible mechanisms with allocation rule such that x(s, θ) = x(s′, θ) if

s, s′ ∈ S0 and x(s, θ) = 1 if s ∈ S1. In this case, it is also without loss of generality to focus

on signal space where S = {0, 1} where allocation 1 is chosen when s = 1.

By the individual rationality constraints for the agent, the ex ante probability that

allocation 1 is chosen in the mechanism should be at least −V (θ,0)
V (θ,1)−V (θ,0) . Moreover, to satisfy

the incentive constraints for the principal, the posterior belief over the payoff difference given

signal 1 should be non-negative, i.e., Eσ[d(ω) | s = 1] ≥ 0. To maximizes the principal’s

expected payoff subject to these constraints, the optimal information structure is σω∗,p∗ ,

which is attained by greedily pooling features with highest payoff differences into signal 1

until one of the constraints is binding. Moreover, p̂ = x(0, θ) is chosen to respect the agent’s

individual rationality constraints, which can be verified to take the form in Equation (1).

Finally, the expected payoff of the principal in the optimal mechanism that incentivize

the agent to accept is

E[U(ω, 1)]− (1− p̂) ·Eσω∗,p∗ [d(ω) · 1 [s = 0]] .

Therefore, the principal prefers this mechanism compared to taking the outside option if

and only if the above term is non-negative. ■
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Proof of Proposition 6. We first characterize the optimal mechanism with fully revealing

information structures. Let Ω1 = {ω ∈ Ω : d(ω) ≥ 0} and Ω0 = {ω ∈ Ω : d(ω) < 0}.
Similar to the proof of Lemma 7, the optimal mechanism M̄ = {Ω, σ̄, x̄} with fully revealing

information structure σ̄ satisfies that x̄(ω, θ) = 1 for all ω ∈ Ω1, and x̄(ω, θ) = 1 with

probability p for all ω ∈ Ω0, where p ∈ [0, 1] is the minimum probability such that the

agent’s individual rationality constraint is satisfied, i.e., p ·FΩ[Ω0] +FΩ[Ω1] =
−V (θ,0)

V (θ,1)−V (θ,0) .

By condition 2, such p exists and is in the interior of (0, 1).

In comparison to the optimal mechanism M = (S, σω∗,p∗ ,x) characterized in Lemma 7,

the ex ante probability allocation 1 is chosen is the same in both mechanisms. However,

condition 2 together with the fact that there exist ω such that d(ω) > 0 in condition 3 implies

that d(ω∗) < 0, and hence in mechanism M allocation 0 is chosen with higher probability

for features with lower payoff differences, instead of distributed uniformly across types in

Ω0 as in mechanism M̄ . This strictly improves the expected payoff of the principal under

condition 3 due to the rearrangement inequality.

Finally, condition 1 implies that the expected payoff of the principal is strictly positive

in the optimal mechanism. Therefore, expected payoff of the principal in the optimal

mechanism is strictly higher than the optimal mechanism with fully revealing information

structures. ■

C Omitted Analysis for Section 5

C.1 Omitted Analysis of Example 1

Claim 1. In the environment given in Example 1, when principal interim individual rational

constraints are imposed, every optimal mechanism (S, σ,M) must satisfy Es∼σ(θ1)[M(s, ϕ)[x1]] =

200/209, Es∼σ(θ1)[M(s, ϕ)[x2]] = 0, Es∼σ(θ1)[M(s, ϕ)[x3]] = 9/209, Es∼σ(θ2)[M(s, ϕ)[x1]] =

0, Es∼σ(θ2)[M(s, ϕ)[x2]] = 200/209, and Es∼σ(θ2)[M(s, ϕ)[x3]] = 9/209.

Proof. First, we establish the following preliminary fact.{(
0,

9

209
,
200

209
,

9

209

)}
= argmax

(z1,z2,z3,z4)∈[0,1]4
−50z1 −

1

2
z2 + 50z3 +

1

2
z4

s.t. z1 + z2 ≤ 1,

z3 + z4 ≤ 1,

z4 ≥ z2,

1− 11

2
z1 +

99

2
z2 −

11

2
z3 +

99

2
z4 ≥ 0.

(2)
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To see this, observe that, for all (z1, z2, z3, z4) that maximize the given objective subject

to the given constraints, it must be that z1 = 0 and z3 + z4 = 1. Additionally, for all

(z1, z2, z3, z4) that satisfy the given constraints and satisfy z2 < z4, there are ways in which

z2 could be increased, z4 could be decreased, and z3 could be increased that would result in

a strictly higher value of the objective while still preserving the constraints. Hence, for all

(z1, z2, z3, z4) that maximize the given objective subject to the given constraints, it must be

that z2 = z4. Combining these findings with the facts that −(1/2)a+ 50(1− a) + (1/2)a =

50 − 50a for all a ∈ R, 1 + (99/2)a − (11/2)(1 − a) + (99/2)a = −9/2 + (209/2)a for all

a ∈ R, and {
9

209

}
=argmax

a∈[0,1]
50− 50a

s.t. − 9

2
+

209

2
a ≥ 0,

gives (2) as a consequence.

Now, observe that, for an arbitrary incentive compatible and individually rational mech-

anism (S, σ,M), the ex-ante expected payoff to the principal is −50Es∼σ(θ1)[M(s, ϕ)[x2]]−
(1/2)Es∼σ(θ1)[M(s, ϕ)[x3]]+50Es∼σ(θ2)[M(s, ϕ)[x2]]+(1/2)Es∼σ(θ2)[M(s, ϕ)[x3]] and the ex-

ante expected payoff to the agent is 1−(11/2)Es∼σ(θ1)[M(s, ϕ)[x2]]+(99/2)Es∼σ(θ1)[M(s, ϕ)[x3]]−
(11/2)Es∼σ(θ2)[M(s, ϕ)[x2]]+(99/2)Es∼σ(θ2)[M(s, ϕ)[x3]]. Additionally, since u(θ1, ϕ, x1) =

u(θ2, ϕ, x2) = 0, u(θ1, ϕ, x) = −u(θ2, ϕ, x) < 0 for all x ∈ X \ {x1}, λ[θ1] = λ[θ2] = 1/2, and

(S, σ,M) is individually rational, it must be that Es∼σ(θ2)[M(s, ϕ)[x3]] ≥ Es∼σ(θ1)[M(s, ϕ)[x3]].

Thus, we have that, every incentive compatible and individually rational mechanism must

result in a weakly lower ex-ante expected payoff to the principal than 10000/2009, the

corresponding optimal value in the problem given by (2). Additionally, every mecha-

nism (S, σ,M) in which either Es∼σ(θ1)[M(s, ϕ)[x1]] ̸= 200/209, Es∼σ(θ1)[M(s, ϕ)[x2]] ̸= 0,

Es∼σ(θ1)[M(s, ϕ)[x3]] ̸= 9/209, Es∼σ(θ2)[M(s, ϕ)[x1]] ̸= 0, Es∼σ(θ2)[M(s, ϕ)[x2]] ̸= 200/209,

or Es∼σ(θ2)[M(s, ϕ)[x3]] ̸= 9/209 must result in a strictly lower ex-ante expected payoff to

the principal than 10000/2009.

Now we complete the argument by showing that there are incentive compatible and

individually rational mechanisms that achieve an ex-ante expected payoff to the principal

of 10000/209, the optimal value in the problem given by (2). Consider a signal set S∗ =

{s1, s2, s3} with precisely 3 signals and the mechanism (S∗, σ∗,M∗) in which σ∗ : Θ →
∆(S∗) is given by

σ∗(θ) =

200
209δs1 +

9
209δs3 if θ = θ1,

200
209δs2 +

9
209δs3 if θ = θ2,
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for all θ ∈ Θ and the allocation rule M∗ : S∗ × Φ → ∆(X) is given by

M∗(s, ϕ) =


δx1 if s = s1,

δx2 if s = s2,

δx3 if s = s3,

for all (s, ϕ) ∈ S × Φ. Observe that 10000/209 is the principal’s expected payoff from

(S∗, σ∗,M∗). Additionally, with information structure (S∗, σ∗), δθ1 is the posterior belief of

the principal upon observing s1, δθ2 is the posterior belief of the principal upon observing

s2, and (1/2)δθ1 + (1/2)δθ2 is the posterior belief of the principal upon observing s3. Thus,

(S∗, σ∗,M∗) is incentive compatible and individually rational for the principal. Moreover,

the expected payoff of the agent from (S∗, σ∗,M∗) is 0. Hence, (S∗, σ∗,M∗) is incentive

compatible and individually rational. ■

Claim 2. In the environment given in Example 1, every individually rational mechanism

(S, σ,M) that induces at most 2 signals with strictly positive probability cannot satisfy

Es∼σ(θ1)[M(s, ϕ)[x1]] = 200/209, Es∼σ(θ1)[M(s, ϕ)[x2]] = 0, Es∼σ(θ1)[M(s, ϕ)[x3]] = 9/209,

Es∼σ(θ2)[M(s, ϕ)[x1]] = 0, Es∼σ(θ2)[M(s, ϕ)[x2]] = 200/209, and Es∼σ(θ2)[M(s, ϕ)[x3]] =

9/209.

Proof. Consider an arbitrary mechanism (S, σ,M) that induces at most 2 signals

with strictly positive probability. Suppose that Es∼σ(θ1)[M(s, ϕ)[x1]] = 200/209,

Es∼σ(θ1)[M(s, ϕ)[x2]] = 0, Es∼σ(θ1)[M(s, ϕ)[x3]] = 9/209, Es∼σ(θ2)[M(s, ϕ)[x1]] = 0,

Es∼σ(θ2)[M(s, ϕ)[x2]] = 200/209, and Es∼σ(θ2)[M(s, ϕ)[x3]] = 9/209. Then there must be

signals s1 ∈ S and s2 ∈ S such that σ(θ1)[s1] = 1, σ(θ2)[s2] = 1, M(s1, ϕ)[x1]] = 200/209,

M(s1, ϕ)[x1]] = 9/209, and M(s2, ϕ)[x2]] = 200/209. Consequently, (S, σ,M) would

not be interim individually rational for the principal upon observing signal s1, since the

resulting interim expected payoff would be −9/209. Thus, it follows that, for every

individually rational mechanism (S, σ,M) that induces at most 2 signals with strictly

positive probability, either Es∼σ(θ1)[M(s, ϕ)[x1]] ̸= 200/209, Es∼σ(θ1)[M(s, ϕ)[x2]] ̸= 0,

Es∼σ(θ1)[M(s, ϕ)[x3]] ̸= 9/209, Es∼σ(θ2)[M(s, ϕ)[x1]] ̸= 0, Es∼σ(θ2)[M(s, ϕ)[x2]] ̸= 200/209,

or Es∼σ(θ2)[M(s, ϕ)[x3]] ̸= 9/209 must hold. ■
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ONLINE APPENDIX

OA 1 Proof of Proposition 1

Proposition 1 follows immediately from Lemmas 8 and 9 below. Here we establish some

preliminaries that will be useful for the proofs in this section. For an arbitrary di-

rect mechanism (σ,x) ∈ M, let q(σ,x) ∈ ∆(Ω × ∆(Ω) × ∆(X)Θ) be the probabil-

ity distribution over Ω × ∆(Ω) × ∆(X)Θ obtained by first drawing ω ∈ Ω according

to FΩ, then drawing s ∈ ∆(Ω) according to σ(ω), and then, with probability 1, draw-

ing ξ ∈ ∆(X)Θ given by ξ(θ) = x(ω, θ) for all θ ∈ Θ. Furthermore, for arbitrary

(σ,x) ∈ M, let p(σ,x) = marg∆(Ω)×∆(X)Θ(q(σ,x)). Observe that, for arbitrary (σ,x) ∈ M,

E(ω,θ)∼F

[
Es∼σ(ω)

[
Ex∼x(s,θ) [U(ω, θ, x)]

]]
= E(s,ξ)∼p(σ,x)

[
E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]]
.

Lemma 8. For all environments in which X is compact and U and V are continuous, there

exist solutions to the problem given by (OPT).

Proof. Let (σn,xn)n∈N ∈ (MF )N be such that limn→∞E(ω,θ)∼F

[
Es∼σn(ω)

[
Ex∼xn(s,θ) [U(ω, θ, x)]

]]
=

sup(σ,x)∈MF E(ω,θ)∼F

[
Es∼σ(ω)

[
Ex∼x(s,θ) [U(ω, θ, x)]

]]
. For all n ∈ N, let qn = q(σn,xn).

Without loss of generality, suppose that (qn)n∈N ∈ ∆(Ω ×∆(Ω) ×∆(X)Θ)N is convergent

and let q ∈ ∆(Ω × ∆(Ω) × ∆(X)Θ) be such that limn→∞ qn = q. For all n ∈ N, let

pn = p(σn,xn), and further let p = marg∆(Ω)×∆(X)Θ(q). Observe that limn→∞ pn = p and

E(s,ξ)∼p

[
E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]]
= lim

n→∞
E(ω,θ)∼F

[
Es∼σn(ω)

[
Ex∼xn(s,θ) [U(ω, θ, x)]

]]
= sup

(σ,x)∈MF

E(ω,θ)∼F

[
Es∼σ(ω)

[
Ex∼x(s,θ) [U(ω, θ, x)]

]]
.

Let Ξ = supp(marg∆(X)Θ(p)).

We will establish that

P(s,ξ)∼p[E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]
= max

ξ̃∈Ξ
E(ω,θ)∼G(s)

[
Ex∼ξ̃(θ) [U(ω, θ, x)]

]
] = 1. (3)

Since Ξ is a compact metric space, there is a countable dense subset of Ξ. Let {ξm ∈
Ξ}m∈N ⊆ Ξ be a countable dense subset of Ξ. Note that (3) is implied by

P(s,ξ)∼p[E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]
≥ E(ω,θ)∼G(s)

[
Ex∼ξm(θ) [U(ω, θ, x)]

]
] = 1 (4)
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holding for all m ∈ N. To see this, observe that, by standard arguments,

{(s, ξ) ∈ ∆(Ω)×∆(X)Θ : E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]
= max

ξ̃∈Ξ
E(ω,θ)∼G(s)

[
Ex∼ξ̃(θ) [U(ω, θ, x)]

]
}

= ∩m∈N {(s, ξ) ∈ ∆(Ω)×∆(X)Θ : E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]
≥ E(ω,θ)∼G(s)

[
Ex∼ξm(θ) [U(ω, θ, x)]

]
},

so (4) holding for all m ∈ N implies (3). Fix arbitrary m ∈ N. There exists (ξm,n)n∈N ∈
(∆(X)Θ)N such that ξm,n ∈ supp(marg∆(X)Θ(pn)) for all n ∈ N and limn→∞ ξm,n = ξm.

Consider arbitrary n ∈ N. By PIC, for all s ∈ ∆(Θ),

E(ω,θ)∼G(s)

[
Ex∼xn(s,θ) [U(ω, θ, x)]

]
≥ E(ω,θ)∼G(s)

[
Ex∼ξm,n(θ) [U(ω, θ, x)]

]
,

so

P(s,ξ)∼pn [E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]
≥ E(ω,θ)∼G(s)

[
Ex∼ξm,n(θ) [U(ω, θ, x)]

]
] = 1.

By standard arguments then, for all ε ∈ R++,

lim
n→∞

P(s,ξ)∼pn [E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]
≥ E(ω,θ)∼G(s)

[
Ex∼ξm(θ) [U(ω, θ, x)]

]
− ε] = 1,

which, combined with the fact that limn→∞ pn = p under the relevant topology of weak

convergence, gives

P(s,ξ)∼p[E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]
≥ E(ω,θ)∼G(s)

[
Ex∼ξm(θ) [U(ω, θ, x)]

]
− ε] = 1.

Consequently, (4) holds for m and, by the arbitrariness of m ∈ M and the equivalence

stated earlier, we conclude that (3) holds.

Let χ : ∆(Ω) → ∆(Ξ) be a regular conditional probability distribution of ∆(X)Θ given

∆(Ω) for the probability distribution p. Further, let ξ : ∆(Ω) → ∆(X)Θ be the mea-

surable mapping such that, for all s ∈ ∆(Ω), ξ(s)(θ)[X̃] = Eξ∼χ(s)

[
Px∼ξ(θ)[X̃]

]
for all

measurable X̃ ⊆ X for all θ ∈ Θ. By the Kuratowski and Ryll-Nardzewski measur-

able selection theorem, there exists some measurable mapping ξ′ : ∆(Ω) → Ξ such that

ξ′(s) ∈ argmaxξ∈ΞE(ω,θ)∼G(s)

[
Ex∼ξ(s)(ω)(θ) [U(ω, θ, x)]

]
for all s ∈ ∆(Ω). By (3), there ex-

ists some measurable S ⊆ ∆(Ω) such that p[S] = 1 and E(ω,θ)∼G(s)

[
Ex∼ξ(s)(θ) [U(ω, θ, x)]

]
=

maxξ∈ΞE(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]
. Let σ : Ω → ∆(∆(Ω)) be the information struc-

ture such that, for all ω ∈ Ω,

σ(ω)[S̃] =
Es∼marg∆(Ω)(p)

[s[ω]]

FΩ[ω]

2



for all measurable S̃ ⊆ ∆(Ω). Let x : ∆(Ω)×Θ → ∆(X) be the allocation rule given by

x(s, θ) =

ξ(s)(θ) if s ∈ S,

ξ′(s)(θ) if s ̸∈ S,

for all (s, θ) ∈ ∆(Ω) × Θ. By construction, p(σ,x) = p. Thus,

E(ω,θ)∼F

[
Es∼σ(ω)

[
Ex∼x(s,θ) [U(ω, θ, x)]

]]
= E(s,ξ)∼p

[
E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]]
=

sup(σ̃,x̃)∈MF E(ω,θ)∼F

[
Es∼σ̃(ω)

[
Ex∼x̃(s,θ) [U(ω, θ, x)]

]]
. We conclude the proof by showing

that (σ,x) ∈ MF .

As xn(s, θ)[o] = xn(s
′, θ)[o] for all n ∈ N, s, s′ ∈ ∆(Ω), θ ∈ Θ, it must be that ξ(θ) =

ξ′(θ) for all ξ, ξ′ ∈ Ξ, θ ∈ Θ. Therefore, x(s, θ) = x(s′, θ) for all s, s′ ∈ ∆(Ω), θ ∈ Θ

and so (σ,x) satisfies the relevant consistency constraints. Moreover, by construction,

s ∈ argmaxs′∈∆(Ω)E(ω,θ)∼G(s)

[
Ex∼x(s′,θ) [U(ω, θ, x)]

]
for all s ∈ ∆(Ω), so (σ,x) satisfies

the PIC constraints. Finally, for all (σ̃, x̃) ∈ M, E(ω,s)∼H(θ,σ̃)

[
Ex∼x̃(s,θ) [V (ω, θ, x)]

]
=

E(s,ξ)∼p(σ̃,x̃)

[∑
ω∈ΩFΘ(ω)[θ]Ex∼ξ(θ′) [V (ω, θ, x)]

]
/FΘ[θ]. Combining this with the fact that,

for all n ∈ N, (σn,xn) satisfies the AIC and AIR constraints gives

E(s,ξ)∼pn

[∑
ω∈Ω

FΘ(ω)[θ]Ex∼ξ(θ) [V (ω, θ, x)]

]
≥ max

{
max
θ′∈Θ

E(s,ξ)∼pn

[∑
ω∈Ω

FΘ(ω)[θ]Ex∼ξ(θ′) [V (ω, θ, x)]

]
, 0

}

for all n ∈ N, θ ∈ Θ. From this and the fact that limn→∞ pn = p, it follows that

E(s,ξ)∼p

[∑
ω∈Ω

FΘ(ω)[θ]Ex∼ξ(θ) [V (ω, θ, x)]

]
≥ max

{
max
θ′∈Θ

E(s,ξ)∼p

[∑
ω∈Ω

FΘ(ω)[θ]Ex∼ξ(θ′) [V (ω, θ, x)]

]
, 0

}

for all θ ∈ Θ and, thus, (σ,x) satisfies the AIC and AIR constraints. ■

Lemma 9. For all environments in which X is compact and U and V are continuous, there

exist solutions to the problem given by (OPT-IR).

Proof. Let (σn,xn)n∈N ∈ (MF,IR)N be such that

lim
n→∞

E(ω,θ)∼F

[
Es∼σn(ω)

[
Ex∼xn(s,θ) [U(ω, θ, x)]

]]
= sup

(σ,x)∈MF,IR

E(ω,θ)∼F

[
Es∼σ(ω)

[
Ex∼x(s,θ) [U(ω, θ, x)]

]]
.

For all n ∈ N, let qn = q(σn,xn). Without loss of generality, suppose that (qn)n∈N ∈
∆(Ω × ∆(Ω) × ∆(X)Θ)N is convergent and let q ∈ ∆(Ω × ∆(Ω) × ∆(X)Θ) be such that

limn→∞ qn = q. For all n ∈ N, let pn = p(σn,xn), and further let p = marg∆(Ω)×∆(X)Θ(q).

3



Observe that limn→∞ pn = p and

E(s,ξ)∼p

[
E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]]
= lim

n→∞
E(ω,θ)∼F

[
Es∼σn(ω)

[
Ex∼xn(s,θ) [U(ω, θ, x)]

]]
= sup

(σ,x)∈MF

E(ω,θ)∼F

[
Es∼σ(ω)

[
Ex∼x(s,θ) [U(ω, θ, x)]

]]
.

Let Ξ = supp(marg∆(X)Θ(p)).

Furthermore, for all n ∈ N, let p̂n =∈ ∆(∆(Ω)×∆(X)Θ)N be the probability distribution

over ∆(Ω)×∆(X)Θ obtained by first drawing drawing s ∈ ∆(Ω) according to U(∆(Ω)) and

then, with probability 1, drawing ξ ∈ ∆(X)Θ given by ξ(θ) = x(ω, θ) for all θ ∈ Θ.

Without loss of generality, suppose that (p̂n)n∈N ∈ ∆(∆(Ω) ×∆(X)Θ)N is convergent and

let p̂ ∈ ∆(∆(Ω)×∆(X)Θ) be such that limn→∞ p̂n = p̂. Let Ξ̂ = supp(marg∆(X)Θ(p̂)).

We will establish that

P(s,ξ)∼p[E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]
= max

ξ̃∈Ξ∪Ξ̂
E(ω,θ)∼G(s)

[
Ex∼ξ̃(θ) [U(ω, θ, x)]

]
] = 1.

(5)

Since Ξ ∪ Ξ̂ is a compact metric space, there is a countable dense subset of Ξ ∪ Ξ̂. Let

{ξm ∈ Ξ∪ Ξ̂}m∈N ⊆ Ξ∪ Ξ̂ be a countable dense subset of Ξ∪ Ξ̂. Note that (5) is implied by

P(s,ξ)∼p[E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]
≥ E(ω,θ)∼G(s)

[
Ex∼ξm(θ) [U(ω, θ, x)]

]
] = 1 (6)

holding for all m ∈ N, as can be shown using a similar argument to the corresponding

argument given in the proof of Lemma 8. Fix arbitrary m ∈ N. There exists (ξm,n)n∈N ∈
(∆(X)Θ)N such that ξm,n ∈ supp(marg∆(X)Θ(pn))∪ supp(marg∆(X)Θ(p̂n)) for all n ∈ N and

limn→∞ ξm,n = ξm. Consider arbitrary n ∈ N. By PIC, for all s ∈ ∆(Θ),

E(ω,θ)∼G(s)

[
Ex∼xn(s,θ) [U(ω, θ, x)]

]
≥ E(ω,θ)∼G(s)

[
Ex∼ξm,n(θ) [U(ω, θ, x)]

]
,

so

P(s,ξ)∼pn [E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]
≥ E(ω,θ)∼G(s)

[
Ex∼ξm,n(θ) [U(ω, θ, x)]

]
] = 1.

By standard arguments then, for all ε ∈ R++,

lim
n→∞

P(s,ξ)∼pn [E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]
≥ E(ω,θ)∼G(s)

[
Ex∼ξm(θ) [U(ω, θ, x)]

]
− ε] = 1,

which, combined with the fact that limn→∞ pn = p under the relevant topology of weak
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convergence, gives

P(s,ξ)∼p[E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]
≥ E(ω,θ)∼G(s)

[
Ex∼ξm(θ) [U(ω, θ, x)]

]
− ε] = 1.

Consequently, (6) holds for m and, by the arbitrariness of m ∈ M and the equivalence

stated earlier, we conclude that (5) holds.

A similar argument establishes that P(s,ξ)∼p̂[E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]
≥ 0] = 1.

Since supp(marg∆(Ω)(p̂)) = ∆(Ω), it follows that max
ξ̃∈Ξ̂E(ω,θ)∼G(s)

[
Ex∼ξ̃(θ) [U(ω, θ, x)]

]
≥

0 for all s ∈ ∆(Ω).

Let χ : ∆(Ω) → ∆(Ξ) be a regular conditional probability distribution of ∆(X)Θ given

∆(Ω) for the probability distribution p. Further, let ξ : ∆(Ω) → ∆(X)Θ be the measurable

mapping such that, for all s ∈ ∆(Ω), ξ(s)(θ)[X̃] = Eξ∼χ(s)

[
Px∼ξ(θ)[X̃]

]
for all measur-

able X̃ ⊆ X for all θ ∈ Θ. By the Kuratowski and Ryll-Nardzewski measurable selection

theorem, there exists some measurable mapping ξ′ : ∆(Ω) → Ξ ∪ Ξ̂ such that ξ′(s) ∈
argmax

ξ∈Ξ∪Ξ̂E(ω,θ)∼G(s)

[
Ex∼ξ(s)(ω)(θ) [U(ω, θ, x)]

]
for all s ∈ ∆(Ω). By (5), there exists

some measurable S ⊆ ∆(Ω) such that p[S] = 1 and E(ω,θ)∼G(s)

[
Ex∼ξ(s)(θ) [U(ω, θ, x)]

]
=

max
ξ∈Ξ∪Ξ̂E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]
. Let σ : Ω → ∆(∆(Ω)) be the information struc-

ture such that, for all ω ∈ Ω,

σ(ω)[S̃] =
Es∼marg∆(Ω)(p)

[s[ω]]

FΩ[ω]

for all measurable S̃ ⊆ ∆(Ω). Let x : ∆(Ω)×Θ → ∆(X) be the allocation rule given by

x(s, θ) =

ξ(s)(θ) if s ∈ S,

ξ′(s)(θ) if s ̸∈ S,

for all (s, θ) ∈ ∆(Ω) × Θ. By construction, p(σ,x) = p. Thus,

E(ω,θ)∼F

[
Es∼σ(ω)

[
Ex∼x(s,θ) [U(ω, θ, x)]

]]
= E(s,ξ)∼p

[
E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]]
=

sup(σ̃,x̃)∈MF,IR E(ω,θ)∼F

[
Es∼σ̃(ω)

[
Ex∼x̃(s,θ) [U(ω, θ, x)]

]]
. We conclude the proof by showing

that (σ,x) ∈ MF,IR.

To establish that (σ,x) satisfies the relevant PIC, AIC, AIR, and Consistency

constraints, very similar arguments to the corresponding arguments given in the

proof of Lemma 8 can be used. Furthermore, E(ω,θ)∼G(s)

[
Ex∼x(s,θ) [U(ω, θ, x)]

]
≥

max
ξ∈Ξ̂E(ω,θ)∼G(s)

[
Ex∼ξ(θ) [U(ω, θ, x)]

]
≥ 0 for all s ∈ ∆(Ω), so (σ,x) satisfies the rele-

vant PIR constraints. ■
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OA 2 Cardinalities of Sets of Induced Interim Be-

liefs for Optimal Mechanisms

OA 2.1 Signal Sets in Quasilinear Environments with Single-

ton Agent Type Sets

The following example provides an environment in which |Ω| = 3, |Θ| = 1, and there is

a mechanism that does strictly better than every mechanism that has strictly fewer than

3 signals or is fully revealing. Combining this with Proposition 5, it follows that, in this

environment, there is an optimal mechanism in which exactly 3 signals are induced with

strictly positive probability, every optimal mechanism must have at least 3 signals induced

with strictly positive probability, and every optimal mechanism must be not fully revealing.

Example 2.

Both the principal’s type set Ω = {ω1, ω2, ω3} and allocation set X = {x1, x2, x3} are

trinary while the agent’s type set Θ = {θ} is singleton. The prior distribution over the

principal’s type λ ∈ ∆(Ω) is such that λ[ω1] = λ[ω3] = 1/4 and λ[ω2] = 1/2. The payoffs to

the principal and the agent, net of transfers, from the various allocations are given in the

following table. (The table is such that, for each (ω, x) ∈ Ω × X, the first number in the

corresponding pair of numbers gives the principal’s payoff while the second number gives

the agent’s payoff.)

ω1 x1 x2 x3

0, 1 −1, 0 1.1,−2

ω2 x1 x2 x3

0, 0 .5, .1 −2, 0

ω3 x1 x2 x3

0, 0 0,−12 1, .1

Table 6: The payoffs net of transfers for Example 6.

□

Claim 3. In the environment given in Example 2, the highest expected payoff for the prin-

cipal across the class of incentive compatible and individually rational mechanisms with at

most 2 signals is 11/20.

Proof. We first show that 11/20 is an upper bound on the expected payoffs for the principal

across all incentive compatible and individually rational mechanisms with at most 2 signals.

Since it is the case that, for each mechanism, the principal’s expected payoff is weakly lower

than the expected surplus generated by the mechanism, we can show that 11/20 is such

6



an upper bound by demonstrating that, for each subset of the allocation set of size 2, the

expected surplus generated by efficiently assigning principal types to allocations within this

subset is weakly less than 11/20. For the {x1, x2} subset of allocations, it would be efficient

from a surplus perspective to assign ω1 and ω3 to x1 and assign ω2 to x2, and doing so

would result in an expected surplus of 11/20. For the {x1, x3} subset of allocations, it

would be efficient to assign ω1 and ω2 to x1 and assign ω3 to x3, and doing so would result

in an expected surplus of 21/40, which is strictly less than 11/20. For the {x2, x3} subset

of allocations, it would be efficient to assign ω2 to x2 and assign ω1 and ω3 to x3, and doing

so would result in an expected surplus of 7/20, which is strictly less than 11/20.

We now show that there is an incentive compatible and individually rational mechanism

with 2 signals that achieves an expected payoff for the principal of 11/20. Consider a signal

set S = {s1, s2} with precisely 2 signals and the mechanism (S, σ,M) in which σ : Ω → ∆(S)

is given by

σ(ω) =

δs1 if ω ∈ {ω1, ω3},

δs2 if ω = ω2,

for all ω ∈ Ω and the allocation rule M : S ×Θ → ∆(X × R) is given by

M(s, θ) =

δ(x1,−.3) if s = s1,

δ(x2,−.3) if s = s2,

for all (s, θ) ∈ S ×Θ. Observe that 11/20 is the principal’s expected payoff from (S, σ,M).

Additionally, with information structure (S, σ), (1/2)δω1 +(1/2)δω3 is the posterior belief of

the principal upon observing s1 and δω2 is the posterior belief of the principal upon observing

s2, so (S, σ,M) is incentive compatible for the principal. Moreover, the expected payoff of

the agent is 0. Thus, (S, σ,M) is incentive compatible and individually rational. ■

Claim 4. In the environment given in Example 2, the highest expected payoff for the prin-

cipal across the class of incentive compatible and individually rational mechanisms that are

fully revealing is 11/20.

Proof. We first show that 11/20 is an upper bound on the expected payoffs for the principal

across all incentive compatible and individually rational mechanisms that are fully revealing.

Consider an arbitrary incentive compatible and individually rational mechanism that is fully

revealing and let p ∈ ∆(Ω×Θ×X×R) denote its outcome. Incentive compatibility requires

that

−Pp[x2|ω1] + 1.1Pp[x3|ω1] + Ep[t|ω1] ≥ −Pp[x2|ω3] + 1.1Pp[x3|ω3] + Ep[t|ω3],

Pp[x3|ω3] + Ep[t|ω3] ≥ Pp[x3|ω1] + Ep[t|ω1].
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Combining these inequalities gives

Pp[x2|ω3] ≥ Pp[x2|ω1] + .1(Pp[x3|ω3]− Pp[x3|ω1]).

Since the principal’s expected utility from p is weakly less than the expected surplus gen-

erated by p, it thus follows that the principal’s expected utility from p, denoted by U(p),

must satisfy

U(p) ≤ 1

4
(Pp[x1|ω1]− Pp[x2|ω1]− .9Pp[x3|ω1]) +

1

2
(.6) +

1

4
(−12Pp[x2|ω3] + 1.1Pp[x3|ω3]) ,

≤ 11

20
− 13

4
Pp[x2|ω1]−

7

40
Pp[x3|ω1]−

1

40
Pp[x3|ω3].

As Pp[x2|ω1],Pp[x3|ω1],Pp[x3|ω3] ≥ 0, it follows that 11/20−13Pp[x2|ω1]/4−7Pp[x3|ω1]/40−
Pp[x3|ω3]/40 ≤ 11/20. Thus, it follows that U(p) ≤ 11/20 must hold.

We now show that there is an incentive compatible and individually rational mechanism

that is fully revealing and achieves an expected payoff for the principal of 11/20. Consider

the mechanism (Ω, σ,M) in which σ : Ω → ∆(Ω) is given by σ(ω) = δω for all ω ∈ Ω and

the allocation rule M : Ω×Θ → ∆(X × R) is given by

M(ω, θ) =

δ(x1,−.3) if ω ∈ {ω1, ω3},

δ(x2,−.3) if ω = ω2

for all (ω, θ) ∈ Ω×Θ. Observe that 11/20 is the principal’s expected payoff from (Ω, σ,M).

Moreover, (Ω, σ,M) is incentive compatible for the principal and the expected payoff of the

agent under (Ω, σ,M) is 0, so (S, σ,M) is incentive compatible and individually rational.

■

Claim 5. In the environment given in Example 2, there is an incentive compatible and

individually rational mechanism with exactly 3 signals that gives an expected payoff of 27/40

to the principal.

Proof. Consider a signal set S = {s1, s2, s3} with precisely 3 signals and the mechanism

(S, σ,M) in which σ : Ω → ∆(S) is given by

σ(ω) =


δs1 if ω = ω1,

1
2δs1 +

1
2δs2 if ω = ω2,

δs3 if ω = ω3,
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for all ω ∈ Ω and the allocation rule M : S ×Θ → ∆(X × R) is given by

M(s, θ) =


δ(x1,−.3) if s = s1,

δ(x2,−.3) if s = s2,

δ(x3,−.3) if s = s3,

for all (s, θ) ∈ S ×Θ. Observe that 27/40 is the principal’s expected payoff from (S, σ,M).

Additionally, with information structure (S, σ), (1/2)δω1 +(1/2)δω2 is the posterior belief of

the principal upon observing s1, δω2 is the posterior belief of the principal upon observing

s2, and δω3 is the posterior belief of the principal upon observing s3. Thus, (S, σ,M) is

incentive compatible for the principal. Moreover, the expected payoff of the agent is 0.

Thus, (S, σ,M) is incentive compatible and individually rational. ■

OA 2.2 Omitted Analysis of Example 1

Let S = 83/30. Observe that S is the highest feasible expected surplus in the environment

given in Example 1. Further, let U = 414883/150270. Observe that S > U > 2.760917.

Claim 6. In the environment given in Example 1, there is an incentive compatible and

individually rational mechanism in which exactly 4 signals are induced with strictly positive

probability that gives an expected payoff of U to the principal.

Proof. Consider a signal set S = {s1, s2, s3, s4} with precisely 4 signals and the mechanism

(S, σ,M) in which σ : Ω → ∆(S) is given by

σ(ω) =


9991
10018δs1 +

27
10018δs4 if ω = ω1,

9991
10018δs2 +

27
10018δs4 if ω = ω2,

δs3 if ω = ω3,
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for all ω ∈ Ω and the allocation rule M : S ×Θ → ∆(X × R) is given by

M(s, θ) =



δ(x1,− 5000
5009

) if (s, θ) = (s1, θ1),

δ(x2,− 5000
5009

) if (s, θ) = (s2, θ1),

δ(x3,− 5000
5009

) if (s, θ) = (s3, θ1),

δ(x4,− 5000
5009

) if (s, θ) = (s4, θ1),

δ(x1,− 50000
5009

) if (s, θ) = (s1, θ2),

δ(x2,− 50000
5009

) if (s, θ) = (s2, θ2),

δ(x3,− 50000
5009

) if (s, θ) = (s3, θ2),

δ(x5,− 50000
5009

) if (s, θ) = (s4, θ2),

for all (s, θ) ∈ S × Θ. Observe that U is the principal’s expected payoff from (S, σ,M).

Additionally, with information structure (S, σ), δω1 is the posterior belief of the principal

upon observing s1, δω2 is the posterior belief of the principal upon observing s2, δω3 is the

posterior belief of the principal upon observing s3, and (1/2)δω1 + (1/2)δω2 is the posterior

belief of the principal upon observing s4. Thus, (S, σ,M) is incentive compatible for the

principal. Moreover, the expected payoff of the type θ1 agent from honestly reporting their

type would be 0 while their expected payoff from misreporting their type as θ2 would be

−45000/5009. Likewise, the expected payoff of the type θ2 agent from honestly reporting

their type would be 0 while their expected payoff from misreporting their type as θ1 would

be −45000/5009. Thus, (S, σ,M) is incentive compatible and individually rational for the

agent. ■

Claim 7. In the environment given in Example 1, for every outcome p ∈ ∆(Ω×Θ×X ×
R) induced by incentive compatible and individually rational mechanisms, the principal’s

expected payoff from p must be weakly less than 299/150 + 2000Pp[x4|ω1, θ1]/3.

Proof. Consider an arbitrary outcome p ∈ ∆(Ω×Θ×X×R) that is induced by an incentive

compatible and individually rational mechanism. Let v1 = Pp[x1|ω1, θ1] + Pp[x2|ω2, θ1] +

Pp[x3|ω3, θ1] − 1000(Pp[x2|ω3, θ1] + Pp[x4|ω3, θ1] + Pp[x5|ω3, θ1]). Observe that max{v1, 0}
is an upper bound on both the value of the agent and the expected surplus generated

by p conditional on θ1 and 299/30 is an upper bound on the expected surplus gener-

ated by p conditional on θ2. Additionally, because p is incentive compatible and indi-

vidually rational, max{9v1 − 10000Pp[x4|ω1, θ1]/3, 0} is a lower bound on the expected

utility of the type θ2 agent. Thus, it follows that (4/5)max{v1, 0} + (1/5)(299/30 −
max{9v1 − 10000Pp[x4|ω1, θ1]/3, 0}) is an upper bound on the principal’s expected pay-
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off from p. As (4/5)max{v1, 0} + (1/5)(299/30 − max{9v1 − 10000Pp[x4|ω1, θ1]/3, 0}) ≤
299/150+2000Pp[x4|ω1, θ1]/3−max{v1, 0} ≤ 299/150+2000Pp[x4|ω1, θ1]/3, it follows that

299/150 + 2000Pp[x4|ω1, θ1]/3 must be an upper bound on the principal’s expected payoff

from p. ■

Claim 7 implies that, in order for a mechanism to obtain an ex-ante payoff for the

principal at least as high as U , the probability that the mechanism results in x4 conditional

on (ω1, θ1) must be strictly positive. This is because obtaining such a high payoff for

the principal requires generating positive surplus conditional on agent type θ1 as well as

preventing the information rent for agent type θ2 from becoming too large, which involves

deterring the type θ2 agent from mimicking the type θ1 agent by inducing x4 with strictly

positive probability conditional on (ω1, θ1).

Claim 8. In the environment given in Example 1, for every outcome p ∈ ∆(Ω×Θ×X×R)
induced by incentive compatible and individually rational mechanisms that induce at most 3

signals with strictly positive probability and give the principal an expected payoff at least U ,

the principal’s expected payoff from p must be weakly less than S − 18.8085(Pp[x4|ω1, θ1] −
.0006).

Proof. We first obtain some properties that must hold for all outcomes that are induced

by incentive compatible and individually rational mechanisms that give the principal an

expected payoff at least U . Consider an arbitrary such outcome p ∈ ∆(Ω × Θ × X × R).
We will argue that, for every i ∈ {1, 2, 3}, min{Pp[xi|ωi, θ1],Pp[xi|ωi, θ2]} ≥ .976 must hold.

Observe that, since the principal’s expected utility from p is weakly less than the expected

surplus generated under p, u(ω1, θ1, x1)+v(ω1, θ1, x1) = 1, and u(ω1, θ1, x)+v(ω1, θ1, x) ≤ 0

for all x ∈ X \ {x1}, Pp[x1|ω1, θ1] ≥ 1 − (S − U)/(λΩ[ω1]λΘ[θ1]) = 4901/5009 > .976

is necessary for (S, σ,M) to give the principal an expected payoff at least U . Simi-

larly, since u(ω1, θ2, x1) + v(ω1, θ2, x1) = 10, and u(ω1, θ2, x) + v(ω1, θ2, x) ≤ 0 for all

x ∈ X \ {x1}, Pp[x1|ω1, θ2] ≥ 1 − (S − U)/(10λΩ[ω1]λΘ[θ2]) = 24829/25045 > .976 must

also hold for (S, σ,M) to give the principal an expected payoff at least U . Almost iden-

tical arguments show that Pp[x2|ω2, θ1] ≥ .976 and Pp[x2|ω2, θ2] ≥ .976 would also have

to hold. Finally, since u(ω3, θ1, x3) + v(ω3, θ1, x3) = .9, u(ω3, θ2, x3) + v(ω3, θ2, x3) =

9.9, and u(ω3, θ, x) + v(ω3, θ, x) ≤ 0 for all (θ, x) ∈ Θ × (X \ {x3}), it follows that

Pp[x3|ω3, θ1] ≥ 1 − (S − U)/(.9λΩ[ω3]λΘ[θ1]) = 4889/5009 > .976 and Pp[x3|ω1, θ2] ≥
1 − (S − U)/(9.9λΩ[ω3]λΘ[θ2]) = 54619/55099 > .976 would have to hold for (S, σ,M)

to give the principal an expected payoff at least U . Hence, for every i ∈ {1, 2, 3},
min{Pp[xi|ωi, θ1],Pp[xi|ωi, θ2]} ≥ .976 must hold.
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Consider now an arbitrary mechanism (S, σ,M) that induces at most 3 signals with

strictly positive probability and gives the principal an expected payoff at least U . Let

p ∈ ∆(Ω × Θ × X × R) denote the outcome induced by (S, σ,M). By the previ-

ously established properties, there must be three signals s1, s2, s3 ∈ S such that, for

all i ∈ {1, 2, 3}, σ(ωi)[si] ≥ 952/976 and min{M(si, θ1)[xi],M(si, θ2)[xi]} ≥ .976. Ob-

serve that, for every i ∈ {1, 2, 3}, the posterior belief of the principal upon observing

si with information structure (S, σ) must put probability at least .952 on ωi. Addition-

ally, since σ(ω1)[s2]M(s2, θ1)[x4] + σ(ω1)[s3]M(s3, θ1)[x4] ≤ (24/976)(.024) < .0006, it

must be that M(s1, θ1)[x4] > Pp[x4|ω1, θ1] − .0006. For all i ∈ {1, 2, 3} and x ∈ X,

let λ(S,σ)(si) ∈ ∆(Ω) denote the posterior belief of the principal upon observing si with

information structure (S, σ) and u(si, x) = Eω∼λ(S,σ)(si)[u(ω, θ1, x)] denote the expected

value of the principal from allocation x given agent type θ1 conditional upon observing

si. (Note that, for all i ∈ {1, 2, 3} and x ∈ X, it is also the case that u(si, x) equals the

expected value of the principal from allocation x given agent type θ2 conditional upon ob-

serving si.) Since λ(S,σ)(s1)[ω1], λ(S,σ)(s2)[ω2] ≥ .952, it follows that u(s1, x1)− u(s3, x1) =

u(s1, x3)− u(s3, x3) ∈ [.0328, .1576], u(s3, x2)− u(s1, x2), u(s3, x4)− u(s1, x4) ∈ [.004, .296],

and u(s1, x5)− u(s3, x5) = 0. Incentive compatibility requires that

∑
x∈X

(
4

5
M(s1, θ1)[x] +

1

5
M(s1, θ2)[x]

)
u(s1, x) +

4

5
EM(s1,θ1)[t] +

1

5
EM(s1,θ2)[t]

≥
∑
x∈X

(
4

5
M(s3, θ1)[x] +

1

5
M(s3, θ2)[x]

)
u(s1, x) +

4

5
EM(s3,θ1)[t] +

1

5
EM(s3,θ2)[t]

and

∑
x∈X

(
4

5
M(s3, θ1)[x] +

1

5
M(s3, θ2)[x]

)
u(s3, x) +

4

5
EM(s3,θ1)[t] +

1

5
EM(s3,θ2)[t]

≥
∑
x∈X

(
4

5
M(s1, θ1)[x] +

1

5
M(s1, θ2)[x]

)
u(s3, x) +

4

5
EM(s1,θ1)[t] +

1

5
EM(s1,θ2)[t].

Combining these inequalities along with the facts that u(s1, x1) − u(s3, x1) = u(s1, x3) −
u(s3, x3) ∈ [.0328, .1576], u(s3, x2) − u(s1, x2), u(s3, x4) − u(s1, x4) ∈ [.004, .296], and
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M(s1, θ1)[x2],M(s1, θ2)[x2],M(s1, θ1)[x4],M(s1, θ2)[x4] ≥ 0 gives

.4536

(
4

5
M(s3, θ1)[x2] +

1

5
M(s3, θ2)[x2] +

4

5
M(s3, θ1)[x4] +

1

5
M(s3, θ2)[x4]

)
+ .1576

(
4

5
M(s3, θ1)[x5] +

1

5
M(s3, θ2)[x5]

)
≥.0328

(
4

5
M(s1, θ1)[x4]

)
.

Hence, since .0328(4/5)/.4536 > .057848, it follows that

4

5
M(s3, θ1)[x2] +

1

5
M(s3, θ2)[x2] +

4

5
M(s3, θ1)[x4] +

1

5
M(s3, θ2)[x4]

+
4

5
M(s3, θ1)[x5] +

1

5
M(s3, θ2)[x5]

>.057848M(s1, θ1)[x4]

As σ(ω3)[s3] ≥ 952/976 and (952/976)(.057848) > .056425508, it thus follows that

Pp[{x2, x4, x5}|ω3] > .056425508M(s1, θ1)[x4].

By this and the facts that the principal’s expected utility from p is weakly less than the

expected surplus generated under p, maxx∈X u(ω, θ, x)+v(ω, θ, x) > 0 for every (ω, θ) ∈ Ω×
Θ, v(ω3, θ1, x2), v(ω3, θ2, x2), v(ω3, θ1, x4), v(ω3, θ2, x4), v(ω3, θ1, x5), v(ω3, θ2, x5) ≤ −1000,

and (1/3)(.056425508)(1000) > 18.8085, it follows that principal’s expected utility from p,

denoted by U(p), must satisfy U(p) ≤ S − 18.8085M(s1, θ1)[x4]. Since M(s1, θ1)[x4] >

Pp[x4|ω1, θ1]− .0006, we conclude that U(p) ≤ S − 18.8085(Pp[x4|ω1, θ1]− .0006). ■

Claim 9. In the environment given in Example 1, every incentive compatible and individu-

ally rational mechanism that induces at most 3 signals with strictly positive probability must

give the principal an expected payoff strictly less than U .

Proof. Consider an arbitrary mechanism that induces at most 3 signals with strictly positive

probability. Let p ∈ ∆(Ω×Θ×X×R) denote the corresponding outcome. Since 299/150+

2000Pp[x4|ω1, θ1]/3 ≤ 133/50 < U if Pp[x4|ω1, θ1] ≤ 1/1000, it follows by Claim 7 that the

mechanism must give the principal an expected payoff strictly less than U if Pp[x4|ω1, θ1] ≤
1/1000. Moreover, since S − 18.8085(Pp[x4|ω1, θ1] − .0006) < 2.76 < U if Pp[x4|ω1, θ1] ≥
1/1000, it follows by Claim 8 that the mechanism must give the principal an expected

payoff strictly less than U if Pp[x4|ω1, θ1] ≥ 1/1000. Hence every incentive compatible

and individually rational mechanism that induces at most 3 signals with strictly positive

probability must give the principal an expected payoff strictly less than U . ■
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OA 2.3 Signal Sets in Non-Quasilinear Environments

The following example provides an environment in which |Ω| = 3, |Θ| = 1, and every

optimal mechanism M = (S, σ,x) must satisfy |S| ≥ 4.

Example 2. The feature set Ω = {ω1, ω2, ω3} has precisely 3 elements, the agent’s type set

Θ = {θ} has precisely 1 element, and the allocation set X = {x1, x2, x3, x4} has precisely 4

elements. The prior distribution over the features F ∈ ∆(Ω) is such that F [ω1] = F [ω2] =

F [ω3] = 1/3. The payoffs to the principal and the agent from the various allocations are

given in the following table. (The table is such that, for each (ω, θ, x) ∈ Ω×Θ×X, the first

number in the corresponding pair of numbers gives the principal’s payoff while the second

number gives the agent’s payoff.)

ω1 x1 x2 x3 x4

1,−1 −1,−1 1,−100 0, 299

ω2 x1 x2 x3 x4

−10,−1 1,−1 −1,−1 0,−1

ω3 x1 x2 x3 x4

−10,−10000 −1,−10000 1,−1 −1,−10000

Table 7: The payoffs for Example 2.

Let U = 149/150. We will show that there exists a mechanism with signal size 4 that

achieves expected payoff U , and any mechanism with signal size at most 3 has expected

payoff strictly less than U .

Intuitively, for any feature ωi, the principal’s first best allocation is xi. However, such

allocation rule is not individually rational for the agent. In order to increase the agent’s

utility for participating in the mechanism, allocation x4 must be chosen with sufficiently

high probability when the feature is ω1. This can be done by pooling feature ω1 and ω2 with

small probabilities into the fourth signal and allocate x4 for that type. Such mechanism

satisfies individual rationality constraint for the agent without creating huge distortions on

the first best allocation for the principal. This construction is illustrated in Claim 10 to

show that the principal can achieve expected payoff U with 4 signals.

Claim 10. In the environment given in Example 2, there is a feasible mechanism in which

exactly 4 signals that gives an expected payoff of U to the principal.

Proof. Consider a signal set S = {s1, s2, s3, s4} with precisely 4 signals and the mechanism
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(S, σ,x) in which σ : Ω → ∆(S) is given by

σ(ω) =


99
100δs1 +

1
100δs4 if ω = ω1,

99
100δs2 +

1
100δs4 if ω = ω2,

δs3 if ω = ω3,

for all ω ∈ Ω and the allocation rule x : S ×Θ → ∆(X) is given by

x(s, θ) =



δx1 if s = s1,

δx2 if s = s2,

δx3 if s = s3,

δx4 if s = s4,

for all (s, θ) ∈ S × Θ. Observe that U is the principal’s expected payoff from (S, σ,x).

Additionally, with information structure (S, σ), δω1 is the posterior belief of the principal

upon observing s1, δω2 is the posterior belief of the principal upon observing s2, δω3 is the

posterior belief of the principal upon observing s3, and (1/2)δω1 + (1/2)δω2 is the posterior

belief of the principal upon observing s4. Thus, (S, σ,x) is incentive compatible for the

principal. Moreover, the expected payoff of the agent is 0, so (S, σ,x) is individually rational

for the agent. ■

In contrast, when there is only 3 signals, in order to attain expected payoff U , the

allocation of the mechanism must be close to efficient. In particular, signals must be almost

revealing for the features, i.e., each signal si would correspond to feature ωi such that signal

si is generated with sufficiently high probability conditional on feature ωi for all i ∈ {1, 2, 3}.
Moreover, in order for the agent’s individual rationality constraint to be satisfied, allocation

x4 must be chosen with sufficiently high probability given signal s1 and allocation x3 must be

chosen with sufficiently high probability given signal s3. However, the creates an incentive

for signal s1 to misreport as s3 since conditional on s1, the principal would believe feature

ω1 happens with high probability, and allocation x3 is favorable to the principal given this

belief. Thus, no mechanism can implemented expected payoff of U for the principal with

only 3 signals. We formalize this intuition in Claim 11.

Claim 11. In the environment given in Example 2, for any feasible mechanism M =

(S, σ,x) with |S| ≤ 3, the expected payoff of mechanism M is strictly less than U .

Combining Claim 10 and 11, the optimal mechanism must have signal space at least 4

in the environment given in Example 2.
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Proof of Claim 11. Suppose towards a contradiction that there exists a feasible mechanism

M = (S, σ,x) with |S| ≤ 3 such that the expected payoff of mechanism M is at least U .

Let PrM [x |ω] be the probability allocation x is chosen when the true feature is ω.

We first show that the following statements must hold: (1) PrM [x4 |ω1] ≥ 1/100; (2)

PrM [x1 |ω1] ,PrM [x2 |ω2] ,PrM [x3 |ω3] > .949696; and (3) PrM [{x1, x2, x4} |ω3] ≤ .00121.

(1) Since the mechanism is individually rational for the agent, and V (ω1, θ, x4) = 299 and

V (ω, θ, x) ≤ −1 for all (ω, x) ∈ (Ω×X)\{(ω1, x4)}, we must have 299PrM [x4 |ω1] /3−
(1−PrM [x4 |ω1] /3) ≥ 0, which implies that PrM [x4 |ω1] ≥ 1/100.

(2) In order for the principal’s expected utility to be at least Ū , the probability each

feature chooses its first best allocation must be sufficiently large. Specifically, since

U(ω1, θ, x1) = U(ω1, θ, x3) = 1 and U(ω1, θ, x2), U(ω1, θ, x4) ≤ 0, we have that

PrM [{x1, x3} |ω1] ≥ 1− (1− U)/F (ω1) = .98. Similarly, PrM [x2 |ω2] ≥ .98 > .949696

and PrM [x3 |ω3] ≥ .98 > .949696 must hold.

Additionally, in order for mechanism M to be individually rational for the agent, the

agent’s expected utility in mechanism M is at least

1

3
(−PrM [x1 |ω1]− 100(.98−PrM [x1 |ω1]) + 299(1− .98))− 2

3
≥ 0

since V (ω1, θ, x1) = −1, V (ω1, θ, x3) = −100, V (ω1, θ, x4) = 299, V (ω, θ, x) ≤ −1 for

all (ω, x) ∈ {ω2, ω3} × X, PrM [{x1, x3} |ω1] ≥ .98, and PrM [x4 |ω1] ≥ 1/100. This

implies that PrM [x1 |ω1] ≥ 1567/1650 > .949696.

(3) Finally, since V (ω1, θ, x4) = 299, V (ω3, θ, x1) = V (ω3, θ, x2) = V (ω3, θ, x4) = −10000,

V (ω, θ, x) ≤ −1 for all (ω, x) ∈ (Ω ×X) \ {(ω1, x4)}, and PrM [x1 |ω1] > .949696, the

individual rationality constraint of the agent implies that the agent’s expected utility

in mechanism M is at least

1

3
(−.949696 + (.050304)(299))− 1

3

+
1

3
(−10000PrM [{x1, x2, x4} |ω3]− (1−PrM [{x1, x2, x4} |ω3])) ≥ 0,

which further implies that PrM [{x1, x2, x4} |ω3] ≤ 229/189375 < .00121.

Since the signal space S only has cardinality 3, PrM [xi |ωi] ≥ .949696 for all i ∈ {1, 2, 3}
implies that x(si, θ)[xi] ≥ .949696 and σ(si |ωi) + (1 − .949696)(1 − σ(si |ωi)) ≥ .949696

for all i ∈ {1, 2, 3}. The latter further implies that σ(si |ωi) ≥ .947 for all i ∈ {1, 2, 3}.
Therefore, for any i ∈ {1, 2, 3}, the posterior belief of the principal upon observing si must
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put probability at least .899 on ωi. Additionally, since σ(s2 |ω1) · x(s2, θ)[x4] + σ(s3 |ω1) ·
x(s3, θ)[x4] ≤ (.053)(.050304) < .00266, it must be that

x(s1, θ)[x4] ≥ PrM [x4 |ω1]− σ(s2 |ω1) · x(s2, θ)[x4]− σ(s3 |ω1) · x(s3, θ)[x4] > .00734.

For all i, j ∈ {1, 2, 3}, let λsi ∈ ∆(Ω) denote the posterior belief of the principal upon

observing si given mechanism M , and U(si, sj) = Ex∼x(sj ,θ)

[
Eω∼λsi

[U(ω, θ, x)]
]
denote the

interim payoff of the principal from reporting sj to the mechanism after observing si. By

simple algebraic calculation,

U(s1, s1) ≤λs1(ω1)(1− x(s1, θ)[x4]) + (1− λs1(ω1))(−10x(s1, θ)[x1] + 1− x(s1, θ)[x1]),

U(s1, s3) ≥λs1(ω1)(x(s3, θ)[x3]− x(s3, θ)[x2])

+ (1− λs1(ω1))(−10(1− x(s3, θ)[x3])− x(s3, θ)[x3]).

Combining these inequalities with the fact that U(s1, s1) ≥ U(s1, s3) would have to hold

gives

λs1(ω1)(1− x(s1, θ)[x4]− x(s3, θ)[x3] + x(s3, θ)[x2])

≥(1− λs1(ω1))(11x(s1, θ)[x1] + 9x(s3, θ)[x3]− 11) ≥ 0.

Since x(s3, θ)[x2] ≤ 1 − x(s3, θ)[x3], the above inequality implies that 1 − x(s3, θ)[x3] ≥
1
2x(s1, θ)[x4] > .00367, which further implies that

PrM [{x1, x2, x4} |ω3] ≥ σ(s3 |ω3)(1− x(s3, θ)[x3]) > (.947)(.00367) > .00347,

which contradicts our previous conclusion that PrM [{x1, x2, x4} |ω3] ≤ .00121. ■

OA 3 Fully Uninformative Informative Structure

Proposition 6 implies that mechanisms with fully revealing information structures are

strictly suboptimal, a natural question to ask is whether mechanisms with fully uninforma-

tive information structures can be strictly optimal for the principal. In particular, we say

an information structure (S, σ) is fully uninformative if σ(ω) = σ(ω′) for all ω, ω′ ∈ Ω.

In the following proposition, we show that there is no strict benefit for the principal

to stay fully ignorant. Specifically, if there exists an optimal mechanism in which the

information structure is not fully uninformative, for any information structure (S, σ), there

exists another optimal mechanism in which the information structure is (S, σ). The high
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level intuition is that the principal can design mechanisms that ignore the report of the

principal, and hence simulating the outcomes of the mechanism with fully uninformative

information structures without violating the incentive constraints for the principal.

Proposition 8. If there is an optimal mechanism in which the information structure is fully

uninformative, then, for every information structure (S, σ), there is an optimal mechanism

in which the information structure is (S, σ).

Proof. Suppose that there is an optimal mechanism Mu = (Su, σu,xu) with fully uninfor-

mative information structure (Su, σu). For any information structure (S, σ), let mechanism

M = (S, σ,x) be the mechanism with allocation rule

x(ω, θ) = Eω′∼FΘ

[
Esu∼σu(ω′)[xu(su, θ)]

]
.

By the construction of mechanism M , it induces the same distribution over outcomes and

hence the same expected payoff for the principal compared to mechanism Mu. Moreover,

this further implies that mechanism M is also incentive compatible and individually rational

for the agent since mechanism Mu is incentive compatible and individually rational for the

agent. Finally, mechanism M is incentive compatible for the principal since the allocation

does not depend on the principal’s report. ■
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