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Abstract

We study the design of optimal allocation mechanism that uses costly signals
from agents as screening devices. The principal is a social planner who aims
to minimize total signaling costs given any monotone allocation rule. Payoff
equivalence generally fails in these environments, making the details of imple-
menting any allocation rule crucial. In particular, there is a tradeoff between
coordinating agents’ signals to reduce the costs incurred by losing agents and
the risk of information leakage, which encourages potential winners to exert ex-
cessive effort based on their recommended signals to compete for the resource.
We show that when agents’ utilities exhibit decreasing absolute risk aversion
for costly signaling, not coordinating their signaling choices and requiring them
always to always bear the signaling costs regardless of their allocation is optimal
for cost saving. In contrast, coordination is optimal under increasing absolute
risk aversion. We further characterize the optimal non-coordination mechanism
under several canonical costs of signaling. For example, we show that for cost
functions reflecting the idea of costly manipulation, the optimal mechanism
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may exhibit randomization, and the value of randomization is strictly positive
in large but finite markets.

Keywords— costly signaling, non-coordination, information leakage, mechanism design
without money.
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1 Introduction

In many real-world applications, resources are allocated based on informative signals regard-
ing agents’ characteristics. For example, college admissions programs often select talented
students based on test scores, such as SAT scores. Procurement processes typically use
Request for Proposal (RFP) mechanisms to select qualified vendors.1 Scientific funding
agencies may rely on peer reviews of proposals to identify high-quality projects. Similarly,
the public housing system allocates housing to low-income individuals or families based on
their financial need or health conditions.

While these signals provide valuable information about the agents for resource alloca-
tion, they are also susceptible to manipulation through costly efforts, which may incentivize
agents to invest inefficiently in socially wasteful signals. For example, students may fake
disabilities to gain extra time on tests, thus achieving higher test scores that do not reflect
increased intellectual ability (Sansone and Sansone, 2011).2 Vendors may create fake com-
panies to qualify for procurement opportunities they would otherwise be ineligible for or
falsify documents to misrepresent costs from the source.3 Applicants for scientific funding
may invest effort in overstating the merits of their projects, rather than focusing on devel-
oping high-quality projects from the outset (Conix et al., 2021). Individuals applying for
public housing may temporarily adopt a low-income lifestyle to gain a favorable position in
the government’s allocation process.

The main goal of this paper is to design mechanisms that minimize the total costs of
signaling while maintaining allocation efficiency. This problem is not trivial because payoff
equivalence (c.f., Myerson, 1981) does not hold under the general signaling cost structures

1See for instance, the information session from US small business administration, which pro-
vides detailed description on how procurement scoring works: https://www.sba.gov/document/
support-small-business-procurement-scorecard-overview.

2Relatedly, on exams intended to test logical reasoning, students can sometimes achieve high
scores by learning material by rote or by memorizing answers to past exams, which does not improve
their logical reasoning ability.

3See for instance the military procurement fraud scheme: https://www.justice.gov/opa/pr/
military-contractors-indicted-7-million-procurement-fraud-scheme.
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we consider in this paper. As a result, different implementation of the same allocation rule
could lead to different signaling costs, which are wasteful from the society’s perspective.
To illustrate the idea, consider a simple example with two agents and one principal. The
agents’ private types are drawn independently and identically from a uniform distribution
F on [0, 1]. Each agent i with private type θi can produce a public signal si ∈ [0,∞), at a
cost ci = max{0, si− θi}. That is, each type θi can inflate their signal to si at a cost si− θi,
while it is costless to produce a signal below their type.

The principal allocates one item between two agents based on their public signals. Specif-
ically, the principal chooses an allocation vector (x1, x2), where 0 ≤ xi ≤ 1 for i ∈ {1, 2} and
x1 + x2 ≤ 1. The agents’ value for receiving the item is normalized to 1, so their utility is
the probability of receiving the item minus the cost of signaling: ui = xi − ci. Suppose the
principal aims to implement the efficient allocation, that is, allocating the item to the agent
with the higher type, while minimizing the total signaling costs, or equivalently, maximizing
the total utilities of the agents.

To implement the efficient allocation, one intuitive approach is to adopt VCG-style
mechanisms and use costly signals as instruments, similar to transfers, for screening the
agents. The mechanism is structured as follows: only the agent receiving the item is required
to generate costly signals. The required signal is set such that the agent’s cutoff type for
winning the item is indifferent between winning and not winning the item.

Example 1 (VCG-style mechanism). Each agent i reports a type θ̂i to the principal. For
each reported type profile θ̂, let i∗ = argmaxi θ̂i be the agent with the higher reported type,
and si = 1 + θ̂−i be the signal that agent i has to produce to get the item.4

• The principal’s recommendation is for agent i∗ to generate signal si∗ , and for the other
agent i ̸= i∗ to generate signal 0.

• The principal allocates the item to agent i∗ if and only if his signal is at least si∗.
Otherwise the principal keeps the item.

In this mechanism, by an argument similar to that used for VCG mechanisms, each
agent has an incentive to truthfully report their type and produce the recommended signal,
ensuring that the efficient allocation is implemented in equilibrium. However, this mech-
anism does not minimize the total cost of signaling. Specifically, for each agent to have
an incentive to truthfully report their type, the higher-type agent must “burn” some utility

4The number 1 in the formula for si is each agent’s valuation of the item. Under this signal
recommendation, agent i’s utility of winning and losing are 1 + θi − si and 0 respectively when his
type is θi. In order for the agent to be indifferent between winning and losing when θi = θ̂−i, we
must have si = 1 + θ̂−i.
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through costly signaling to prove their higher type. More precisely, in expectation, each
agent must exert a strictly positive effort of 1 +E

[
θ(2) − θ(1) | θ(2) ≤ θ(1)

]
= 2

3 , where θ(2) is
the lower type and θ(1) is the higher type.

However, we show that there exists a non-coordination mechanism, specifically a winner-
takes-all (WTA) contest, which enables the principal to implement the efficient allocation
without incurring any positive signaling costs.

Example 2 (WTA contest). The principal commits to a contest rule under which she al-
locates the item to the agent who generates the highest signal. Under this rule, it is an
equilibrium for each agent to use the strategy si(θi) = θi.

The WTA contest can also be represented as a direct mechanism where each agent
is recommended a signal si(θi) = θi after reporting their type. This is a non-coordination
mechanism, where the recommended signal for each agent is a deterministic function of their
own type and does not depend on the types or reports of other agents. In this mechanism,
conditional on the other agents reporting truthfully and following the signal recommenda-
tion, each agent i’s payoff from producing a signal si ≥ θi is F (si)−(si−θi) = θi. Therefore,
any deviation is not profitable for the agents, and truthfully reporting and following the rec-
ommendation not to produce costly signals is indeed an equilibrium. In both mechanisms
above, it is easy to verify that the efficient allocation rule is implemented, while the non-
coordination mechanism strictly outperforms the VCG-style mechanism in terms of cost
efficiency.

Intuitively, one might conjecture that the VCG-style mechanism would outperform the
non-coordination mechanism in terms of signaling costs. This is because the VCG-style
mechanism only requires the agent to bear the signaling cost when they win the item, while
the non-coordination mechanism imposes this cost on agents regardless of whether they win.
However, our example suggests the opposite.

The correct intuition is that, in the VCG-style mechanism, coordination of signaling
choices leads to information leakage. Upon receiving information or a signal recommenda-
tion indicating they are potential winners, lower-type agents may have a strong incentive to
deviate by generating a high signal to secure the item. To deter such behavior, the signal
required from the winner must be sufficiently high, leading to increased costs for the agent.
In contrast, in non-coordination mechanisms, agents remain unaware of the realized types
and signals of others. This uncertainty reduces the incentive for lower-type agents to mimic
higher-type agents, as they cannot be sure of winning. Moreover, agents still bear the signal-
ing cost even if they lose the item. As a result, the signal required from the high-type agent
to deter the low-type agent can be kept low, reducing overall signaling costs. In Section 3,
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we show that this intuitive idea extends beyond the simple example illustrated above, pro-
vided the agent exhibits constant absolute risk aversion with respect to the cost of signaling.
Specifically, we show that under these utility assumptions, non-coordination mechanisms
maximize the agents’ utilities when implementing any feasible monotone allocation.

Given that non-coordination mechanisms are optimal in terms of cost savings, we now
focus on characterizing the optimal non-coordination mechanisms. For any implementable
allocation rule, the choice of the non-coordination mechanism is essentially unique, except
for the choice of expected utility for the lowest type of each agent. Thus, our main focus here
is to characterize the optimal mechanism that strikes the best balance between allocation
efficiency and agents’ utilities.

Characterizing the optimal non-coordination mechanism for general signaling cost struc-
tures remains challenging due to the non-trivial feasibility constraints on allocations (see
Section 4.2 for detailed discussions). For tractability, we focus primarily on two canonical
forms of utility functions. The first case considers utility functions that are multiplicatively
separable. Specifically, each agent i’s utility for receiving allocation xi while producing sig-
nal si is given by ui(xi, si, θi) = vi(xi, θi)− hi(si)

gi(θi)
. In this special case, the problem reduces

to the standard money-burning problem, and the optimal mechanism can be characterized
using tools from the literature (Hartline and Roughgarden, 2008; Akbarpour et al., 2024).

A more interesting case involves utility functions that capture costly falsification. That
is, each agent i’s utility for receiving allocation xi while producing signal si is given by
ui(xi, si, θi) = xi−η · (si−θi)

+ where η captures the agent’s ability to falsify the signal. For
this type of falsification cost, the optimal mechanisms can still be quite complex, especially
with arbitrary type distribution primitives. Nevertheless, we show that the optimal mecha-
nism in symmetric environments can be illustrated as follows. The type space of each agent
is partitioned into disjoint intervals, with each interval belonging to one of the following
three categories: (1) the no-tension interval, (2) the no-effort interval, and (3) the efficient
interval. Types in the no-effort interval are pooled together and assigned a coarse ranking,
while types in the other two intervals maintain their strict order. Items are then allocated
efficiently according to this ranking. Under this mechanism, any agent with a type in the
first two intervals has no incentive to exert effort, while any agent with a type in the third
interval exerts positive effort.

Intuitively, the principal always aims to allocate items efficiently, provided that this
does not incentivize unnecessary effort. This is achievable in the no-tension interval, making
it optimal in that range. However, if allocating the item efficiently encourages an agent
to misreport their type as higher, it induces costly effort. In such cases, depending on
the principal’s weights for agent utilities in the objective function, it may remain optimal
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to allocate efficiently while inducing effort (as in the efficient interval). Alternatively, the
principal may randomize the allocation so that the marginal benefit of exerting effort equals
the marginal cost, completely eliminating the agents’ incentives to produce costly signals
(this occurs in the no-effort interval). Interestingly, our result shows that these extreme
treatments are sufficient to achieve the optimal outcome, and partial randomizations that
induce smaller but strictly positive signaling costs are never required in the optimal non-
coordination mechanism. Finally, note that although these three categories of intervals
account for all possible outcomes in optimal mechanisms, each category may consist of
countably many intervals. The order in which these intervals appear also depends on the
shape of the type distribution and other primitives, such as the number of available items.

Our paper provides a sharper characterization for large markets with a large number
of agents. We consider two cases. In the first case, the principal has only one item to
allocate.5 This assumption is relevant for applications such as prestigious scholarships and
research funding, where the number of winners is small relative to the number of applicants.
In this case, we show that as the number of agents increases, the structure of the optimal
mechanism converges to that of a winner-takes-all (WTA) contest (equivalently, there exists
an efficient interval that converges to the entire type space) However, the principal’s expected
payoff under the WTA contest does not converge to the optimal payoff in the large-market
limit. The intuition is that, for any sufficiently large but finite number of agents, the WTA
contest puts excessive pressure on agents with types close to the highest in the support in
order to win the item, leading to significant costly efforts from those types. In contrast,
by introducing a small but non-empty no-effort interval in the optimal mechanism for these
high types, which randomizes the allocation, the principal can significantly reduce the cost
of signaling with only a negligible loss in efficiency, as all these high types are almost equally
qualified for receiving the item.6

In the second case, we consider a scenario where the number of items grows proportionally
with the number of agents. This model is more suited for applications such as college
admissions and government benefit programs like public housing or food subsidies, where a
significant fraction of the agents receive an item. In this case, if the items were allocated
efficiently, all agents with types above a certain cutoff would receive an item. We find that in
the optimal mechanism, the principal randomizes the allocation for types around the cutoff
(i.e., the “middle” types) to eliminate their incentives to exert costly effort. This increases
the expected utilities of both the “middle” types and slightly higher types (those whose

5The idea extends easily to a constant number of items.
6Our result on payoff non-convergence contrasts with findings in the large contest literature,

where a continuum of agents is used to approximate a finite market (e.g., Olszewski and Siegel,
2016).
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types are above the “middle” types, but not significantly above the cutoff), at the cost of
only slightly reduces matching efficiency for the “middle” types. Our finding is reminiscent of
Director’s law, which suggests that public programs are often designed primarily to benefit
the middle classes. It also aligns with the empirical results of Krishna et al. (2022), who
use data from Turkey to show that randomly allocating college seats to low-scoring students
reduces stress for all students.7

1.1 Related Work

Our paper is closely related to the literature on costly signaling and money burning (e.g.,
Chakravarty and Kaplan, 2006; Hartline and Roughgarden, 2008; Condorelli, 2012; Finkel-
stein and Notowidigdo, 2019; Akbarpour et al., 2024; Yang et al., 2024). Prior work often
relies on a linear structure of the payoff functions, either in transfers (e.g., Hartline and
Roughgarden, 2008) or in costly signals or costly ordeals (e.g., Akbarpour et al., 2024; Yang
et al., 2024). In contrast, our paper considers a general cost structure and shows that the
standard payoff equivalence fails, and that the implementation of allocation rules and the
(non-)coordination of costly signaling choices play a crucial role in reducing the cost of
screening. This observation is absent under restrictive linear cost structures, and our pa-
per provides a tractable framework for analyzing these novel economic effects in screening
problems.

Our paper is also conceptually related to the literature on falsification and costly lying
(e.g., Green and Laffont, 1986; Hardt et al., 2016; Perez-Richet and Skreta, 2022, 2023, 2024).
Green and Laffont (1986) focus on auction settings where the lying costs are either zero or
infinite. The cost structures in other papers are more general, while the underlying design
problems differ more significantly. For instance, Hardt et al. (2016) focus on classification
problems in a machine learning context, whereas Perez-Richet and Skreta (2022) concentrate
on test design problems. The paper most closely related to ours is the contemporary work
by Perez-Richet and Skreta (2024). They focus on a single-agent model and show that
the optimal mechanism is score-based when the falsification cost is linear or quadratic.8

Their notion of score-based shares similar features with our non-coordination mechanism,
as both require deterministic signal recommendations. However, the principal’s objective
in their paper differs from ours, and insights regarding whether coordination is beneficial

7Our prediction aligns with their findings, as the “low” types in our model correspond to students
who drop out due to having no chance at college admissions. The random allocation for low-scoring
students mirrors the randomization for “middle” types in our model.

8They also show that for general cost structures, the optimal mechanism is score-based if it can be
implemented as a deterministic mechanism. However, whether a deterministic mechanism is optimal
remains unclear except in special cases, such as linear or quadratic costs.
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under costly signaling cannot be obtained from a single-agent model.9

The costly signaling aspect of our paper resembles the literature on signaling (e.g.,
Spence, 1973) and gaming (e.g., Frankel and Kartik, 2019; Ball, 2024), which studies ma-
nipulative behaviors in signaling games. The main distinction is that in signaling games,
there is a competitive market that pays each agent a wage corresponding to their estimated
type, whereas we adopt a mechanism design perspective in these markets and characterize
the optimal mechanisms for allocating resources using costly signals as screening devices.

In our paper, the principal’s main objective is to design a mechanism that implements a
specific allocation rule in the least costly way. Our results extend naturally if the principal
has a preference over allocations and seeks to maximize the weighted averages of the payoffs
from allocations and the agents’ utilities. If the weights on the agents’ utilities are zero,
this reduces to the classical screening problem of maximizing the principal’s expected payoff
(e.g., Laffont and Martimort, 2009). Conversely, if the weights on the payoffs from alloca-
tions are zero, this reduces the problem to mechanisms with pure redistributive concerns
(e.g., Dworczak et al., 2021; Akbarpour et al., 2024). Our results imply that in all these
environments, under general conditions on cost functions, mechanisms without coordination
remain weakly optimal, which greatly simplifies the optimal design problems since payoff
equivalence fails due to the absence of quasilinear transfers.

The non-coordination mechanisms in our paper can be implemented as a coarse ranking
contest, which can be viewed as a generalization of classic contest formats adopted in the
literature that are based on strict rankings, such as all-pay contests (Liu and Lu, 2017),
Lazear–Rosen contests (Lazear and Rosen, 1981), and Tullock contests (Fu and Wu, 2019).
The optimality of contests among general mechanisms has also been established in Zhang
(2024), which relies on payoff equivalence results. The main differences are that payoff equiv-
alence fails in our setting and that they focus on effort-maximizing mechanisms, whereas
we focus on reducing effort. Additionally, our analysis of optimal contests in large markets
sharply contrasts with the results in large contests by Olszewski and Siegel (2020), as our
paper provides an environment where the optimal payoff in a finite large contest cannot be
approximated by the limiting case.

9Additionally, from a technical perspective, Perez-Richet and Skreta (2024) derive their results
by explicitly characterizing the optimal single-agent mechanism. In contrast, we provide general
sufficient conditions on the cost structures, including linear or quadratic costs as special cases,
showing that the optimal multi-agent mechanism does not coordinate on costly signaling choices,
even in settings where characterizing the optimal may be intractable.
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2 Model

The principal (she) wishes to allocate k identical items to n > k heterogeneous agents (he).
An allocation x = (xi)

n
i=1 is a vector of probabilities such that 0 ≤ xi ≤ 1 for each i, and∑n

i=1 xi ≤ k.10 Let X ⊆ [0, 1]n be the space of feasible allocations.

Agents’ information and payoffs. Each agent i has a private type θi drawn indepen-
dently from a publicly known distribution Fi supported on Θi = [θi, θ̄i] ⊆ R+. We denote
the distribution over type profile θ as F . The principal cannot directly observe the agents’
private types, but she can base her allocation decision on their public signals. Specifically,
each agent i can generate a costly public signal si ∈ Si = R+ and the utility of the agent
is ui(xi, si, θi) for receiving an item with probability xi ∈ [0, 1] when generating signal si.
We assume that the agent’s utility satisfies the von Neumann-Morgenstern expected utility
representation.

Assumption 1 (monotonicity). For any agent i, the utility function ui is continuous in
all of its coordinates, bounded in value, strictly increasing in xi, weakly decreasing in si and
weakly increasing in θi.

The interpretation of the monotonicity of the utility function is that the agent always
strictly prefers a higher probability of allocation. Moreover, the signals are costly for the
agents to generate, and the cost of signal is weakly increasing in the signal realization. The
increase in utility from the increase in private type may come from two parts. First, the
agent’s value for the item may be weakly higher for a higher type. Second, the cost of
generating a higher signal may be weakly lower for a higher type. In the main result of this
paper, we do not distinguish these two forces in the utility function.

We assume that each agent’s utility function satisfies the weak single-crossing property
as in Milgrom and Shannon (1994).

Assumption 2 (weak single-crossing property (wSCP)). The utility function u satisfies
weak single-crossing property (wSCP) if for any types θ′ > θ, any signals s′ > s and any
allocation probabilities x′ > x,

1. u(x′, s′, θ)− u(x, s, θ) > 0 implies that u(x′, s′, θ′)− u(x, s, θ′) > 0;

2. u(x′, s′, θ)− u(x, s, θ) ≥ 0 implies that u(x′, s′, θ′)− u(x, s, θ′) ≥ 0.
10Our paper focuses on the interpretation where items are indivisible and xi represents allocation

probabilities. All the results extend naturally by considering divisible items and interpreting xi as
fractional allocations.
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Given any distribution G over allocations and signal realizations, the utility of the agent i
with type θi given distribution G is denoted by ui(G, θi). We assume that the agent has
expected utility representation. Note that our single-crossing condition is only imposed on
deterministic signal realizations. In general, single-crossing condition fails when randomiza-
tion is taken into consideration. The utility function illustrated in the introduction is an
example where Assumption 2 holds while the single-crossing condition fails for randomized
signals.

General Mechanisms. We focus on direct mechanisms, in which the principal can
elicit the types from all the agents, and can make signal recommendations based on the
aggregated report before the agents choose their signals. Formally, the timeline for a direct
mechanism is as follows:

(1) The principal commits to a signal recommendation policy s̃ : Θ → ∆(S) and an alloca-
tion rule y : Θ× S → X.

(2) Each agent i reports type θ̂i to the principal and receives signal recommendation s̃i(θ̂).
Then each agent i chooses signal s′i ∈ {s̃i(θ̂), 0}.11

(3) The principal observes the signal profile s′, and each agent i receives an item with
probability yi(θ̂, s

′).

Given any direct mechanism, the interim allocation of agent i with private type θi is de-
noted as

Qi(θi) = Eθ−i

[
Esi∼s̃i(θi,θ−i)[yi(θi,θ−i, si, s̃−i(θi,θ−i))]

]
and the interim utility is denoted as

Ui(θi) = Eθ−i

[
Esi∼s̃i(θi,θ−i)[ui(yi(θi,θ−i, si, s̃−i(θi,θ−i)), si, θi)]

]
.

A direct mechanism is incentive compatible (IC) if each agent has a weakly higher utility for
truthful reporting, i.e., for any agent i and any types θi, θ′i, Each agent has a weak incentive

11We impose interim participation constraints for agents, i.e., agents can choose to walk away after
seeing the signal recommendation. Our formulation is without loss of generality under the interim
participation constraints since the principal can partially enforce the recommendation by allocating
no items to any agent who chooses a signal different from the recommended one. Here each agent
essentially has two choices: following the recommendation (s′i = s̃i(θ̂)) or opting out (s′i = 0). An
alternative formulation is to only consider the ex ante participation constraint where each agent
only has the option to opt out at the beginning of the mechanism, and they are forced to follow the
principal’s recommendation after participation. This distinction is not crucial for our analysis, and
the main results of the paper hold for both cases.
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to truthfully report his own type and follow the signal recommendation:

Ui(θi) ≥ Eθ−i

[
Esi∼s̃(θ′i,θ−i)

[
max{0, ui(yi(θ′i,θ−i, si, s̃−i(θ

′
i,θ−i)), si, θi)}

]]
. (IC)

By the revelation principle (Myerson, 1982), it is without loss to focus on direct mechanisms
that are incentive compatible. For the rest of the paper, we refer to those mechanisms as
direct mechanisms without explicitly mentioning incentive compatibility when there is no
ambiguity.

Non-coordination Mechanisms. We now introduce the non-coordination mecha-
nisms. In non-coordination mechanisms, the principal does not provide signal recommenda-
tions to the agents based on the aggregated reported types. Instead, the principal commits
to a signal-based allocation rule x : S → X, which maps each realized signal profile to
a (randomized) allocation. After the signal-based allocation rule is announced, each agent
chooses his signal strategy to maximize their expected utilities. It is worth emphasizing that
the effort choice of a given agent is not correlated with the realized types or effort choices
of any other agents, i.e., there is no coordination.

We denote the strategy of each agent i by si : Θi → ∆(Si). Given the strategy profile
s = (si)

n
i=1 and the realized signal profile s(θ) = (si(θi))

n
i=1, the item is distributed according

to the allocation rule x(s(θ)). Formally, the timeline is as follows:

(1) The principal commits to a signal-based allocation rule x : S → X.

(2) Each agent i, with type θi, generates a costly signal si(θi).

(3) The principal observes the signal profile s, and each agent i receives an item with
probability xi(s(θ)).

Here the signal-based allocation rule defines a game for the agents. We provide a direct
mechanism implementation for non-coordination mechanisms when this game has a pure
strategy equilibrium. The timeline of a direct non-coordination mechanism is illustrated as
follows.

(1) The principal commits to a signal recommendation policy s̃i : Θi → Si for each agent i

and allocation rule y : S → X.

(2) Each agent i reports type θ̂i to the principal and receives signal recommendation s̃i(θ̂i).
Then each agent i chooses signal s′i ∈ {s̃i(θ̂i), 0}.

(3) The principal observes the signal profile s′, and each agent i receives an item with
probability yi(s

′).
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The main difference between a general direct mechanism and a direct non-coordination
mechanism is in step (1), where the signal recommendation for each agent in the direct
non-coordination mechanism only depends on each agent’s own reported type, not the en-
tire type profile. This restriction prevent the coordination of the choices of costly signals.
Additionally, the allocation function in the direct non-coordination mechanism only depends
on the realized signal profile, not the reported types.

Applying a similar argument as the revelation principle, it is straightforward to show
that any non-coordination mechanism with a pure strategy equilibrium can be implemented
as a direct non-coordination mechanism, and vice versa. Similar result is also observed in
the contemporary work by Perez-Richet and Skreta (2024) in the special case of single-agent
environments.

Interim approach. The main analyses of the paper highly rely on the interim approach
where we focus on interim allocation rule and interim utilities instead of ex post ones. In
particular, we are interested in understanding whether a given interim allocation–utility pair
(Q,U) is feasible and implementable.

Definition 1. Given any interim allocation rule profile Q = (Qi)
n
i=1 where Qi : Θi → [0, 1],

Q is feasible if there exists an ex-post allocation rule q such that Qi(θi) = Eθ−i
[qi(θi, θ−i)]

for any agent i and type θi. We say an interim allocation–utility pair (Q,U) is feasible if
Q is feasible.

In general, not all interim allocation rules are feasible. The set of feasible interim al-
locations has been characterized in Border (1991); Che et al. (2013). See Lemma 3 in
Appendix A.2 for more details.

Definition 2. An interim allocation–utility pair (Q,U) is implementable by a direct mech-
anism if there exists a direct mechanism with signal recommendation policy s̃ and allocation
rule y such that for any agent i and type θi, the consistency condition holds. I.e.,

Qi(θi) = Eθ−i

[
Esi∼s̃i(θi,θ−i)[yi(θi,θ−i, si, s̃−i(θi,θ−i))]

]
, (consistency)

Ui(θi) = Eθ−i

[
Esi∼s̃i(θi,θ−i)[ui(yi(θi,θ−i, si, s̃−i(θiθ−i)), si, θi)]

]
.

We say an interim allocation Q is implementable if there exists an interim utility U such
that (Q,U) is implementable by a direct mechanism.

In addition, an interim allocation–utility pair (Q,U) is implementable by a direct non-
coordination mechanism if the mechanism specified in Definition 2 is a direct non-coordination
mechanism.
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Principal’s payoff. The principal cares the utilities of the agents since the costly signals
are wasteful from a social perspective. Specifically, given any feasible and implementable
interim allocation Q, the principal want to design a mechanism that implements Q while
maximizing the agents’ weighted utilities. Moreover, we allow the weighting function to
depend on the agents’ private types as in the literature with redistribution purposes (e.g.,
Dworczak et al., 2021; Akbarpour et al., 2024). Specifically, there exists a weighting function
wi(θi) ∈ [0, 1] such that the principal’s objective is to maximize∑

i∈[n]

Eθi∼Fi
[wi(θi) · Ui(θi)] ,

subject to the constraint of implementing Q.
One possible rationale for this objective of the principal is that there is a social benefit

of allocating the items to particular types of the agents, and the objective of the principal
is to maximizes the weighted average between the social benefits and the agents utilities.
Specifically, let Wi be the weighted social benefit function for each agent i and the objective
of the principal is to maximize∑

i∈[n]

Eθi∼Fi
[Wi(Qi(θi), θi) + wi(θi) · Ui(θi)] .

Similar objective functions have also been studied in the falsification literature (Perez-Richet
and Skreta, 2022, 2024). This objective is useful for characterizing the optimal mechanisms.
However, the optimality of non-coordination mechanisms (Theorem 1) does not depend on
this specific formulation of the principal’s objective function.

3 Optimality of Non-coordination Mechanisms

In this section, we provide sufficient conditions that the optimal mechanism that implements
any given monotone allocation rule is a non-coordination mechanism.

Definition 3. Given any distribution G over allocations and signals, letting xG be the
marginal distribution over allocations, the certainty equivalent signal Σ(G, θ) of the distri-
bution G for type θ is defined as the signal such that u(xG,Σ(G, θ), θ) = u(G, θ).

Assumption 3 (Monotone Certainty Equivalence). Each agent has weakly monotonicity in
certainty equivalence for costly signaling. That is, for any distribution G over allocations
and signals, the certainty equivalence Σ(G, θi) is weakly increasing in θi for all agents i.
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One canonical form of utility function is

ui(G, θi) = E(x,s)∼G[vi(x, θi)− ci(s, θi)]

where Vi is agent i’s value for allocation and ci is the cost of signaling. In our model, a higher
type is interpreted as an agent with a higher need for the item, and hence lower wealth.
Naturally, a lower wealth agent has a stronger preference for certain outcomes and hence a
higher certainty equivalent signal. The monotone certainty equivalence assumption implies
when the cost function is convex (which is not required for our general result), the agent’s
preferences for utility loss from costly signaling resembles weakly decreasing absolute risk
aversion (DARA) utilities, which is commonly adopted in economic models (e.g., Arrow,
1965; Pratt, 1976).

Theorem 1 (Optimality of Non-coordination). Under Assumption 1, 2 and 3, for any
interim allocation–utility pair (Q,U) that is implementable by a direct mechanism where Qi

is weakly increasing for all i, there exists a interim allocation–utility pair (Q†,U †) such that
Q† = Q,

U †
i (θi) ≥ Ui(θi), ∀i ≤ n, θi ∈ Θi,

and (Q†,U †) is implementable by a direct non-coordination mechanism.

Note that in the introduction, we provided an example where the inequality is strict for
all the agents.

Proof. To simplify the exposition, we only present the proof when the type space is finite.12

We denote the type space as Θi = {θ̂(0)i , . . . , θ̂
(m)
i }, with θ̂

(0)
i < · · · < θ̂

(m)
i . The proof is

constructive. Specifically, in Step 1, we will replace the stochastic signal recommendation
given in the direct mechanism with a deterministic signal recommendation, which is the cer-
tainty equivalent signal as defined in Definition 3. Such a replacement will respect the local
(upward) IC constraints but might fail the local (downward) IC constraints. Therefore, in
Step 2, we will modify the deterministic signal recommendation such that local (downward)
IC constraints are also respected. By the wSCP of each agent’s utility function (Assump-
tion 2), it is easy to verify that the candidate mechanism we have constructed outperforms

12For continuous type space, we can show that for any ϵ > 0, by carefully discretizing the type
space and applying the same argument, there exists an allocation–utility pair (Q†,U †) that is
implementable by a direct non-coordination mechanism and Objα(Q

†,U †) ≥ Objα(Q,U)− ϵ. The
theorem holds by taking ϵ → 0 and the observation that the set of payoffs obtainable by non-
coordination mechanisms is compact.
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the given direct mechanism in terms of designer’s objective. Moreover, it is implemented as
a direct non-coordination mechanism.

Step 1: Certainty equivalent signal. The expected utility of each agent i under any
direct mechanism is pinned down by the associated random signal recommendation and the
expected allocation. Since type space is discrete, we define the following simplified notations.
Fix the direct mechanism that delivers interim allocation Q and interim utility U , let G

(k)
i

be the distribution over signals recommended to agent i who reports type θ̂
(k)
i , and let Q(k)

i

be the corresponding expected allocation given to agent i who reports type θ̂
(k)
i .

Denote the certainty equivalent signal of G(k)
i for type θ̂

(j)
i as

s
(k,j)
i ≜ Σ(G

(k)
i , θ̂

(j)
i ), 0 ≤ k, j ≤ m.

Moreover, let s
(k)
i := s

(k,k)
i , for all 0 ≤ k ≤ m.

First we replace the randomized signal recommendation G
(k)
i with its certainty equiv-

alence s
(k)
i for each type θ̂

(k)
i while maintaining the same allocation rule. After such a

replacement, Assumption 3 guarantees that when type θ̂
(k−1)
i deviates to the adjacent type

θ̂
(k)
i , he is weakly worse under the certainty equivalence s

(k)
i compared to under the original

randomized signal recommendation. Specifically, agent type θ̂
(k−1)
i ’s utility for misreporting

as type θ̂
(k)
i in the direct mechanism is at least13

ui

(
Q

(k)
i , G

(k)
i , θ̂

(k−1)
i

)
= ui

(
Q

(k)
i , s

(k,k−1)
i , θ̂

(k−1)
i

)
≥ ui

(
Q

(k)
i , s

(k)
i , θ̂

(k−1)
i

)
,

where the equality follows from the definition of certainty equivalent signal, and the inequal-
ity holds since (1) s

(k,j)
i is increasing in j by Assumption 3; and (2) the utility function is

weakly increasing in the signal. Since the utility for misreporting as type θ̂(k)i is weakly lower
and the utility for truthfully reporting as type θ̂

(k−1)
i remains unchanged, the agent has no

incentives for local upward deviation.

Step 2: Downward adjustments for global incentive. Step 1 has shown that by replacing
the randomized recommendation with its certainty equivalence, the local upward incentive
constraints hold. However, the local downward incentive constraints may be violated. In
this step, we decrease the recommended signals so that the local (downward) incentive
compatible constraints can be restored whenever they are violated under the deterministic

13Notice that the agent can potentially adopt double deviation strategies in the direct mechanism
based on the signal realizations, i.e., after misreporting, the agent can walk away based on the signal
realization.
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signal constructed in step 1. The single-crossing property will then show that the global
incentives is implied by the local incentives.

First note that since Q
(k)
i is weakly increasing in k and the local upward incentive

constraints hold, the monotonicity of the utility function implies that the certainty equivalent
signals s

(k)
i are also weakly increasing in k.

We proceed by induction. Let ŝ
(0)
i = s

(0)
i . For any 1 ≤ k ≤ m, let ŝ

(k)
i = s

(k)
i if the local

downward incentive constraint holds for type θ̂(k)i . If the local downward incentive constraint
is violated, the monotonicity and continuity of the cost function implies that there exists a
signal ŝ(k)i ∈ [ŝ

(k−1)
i , s

(k)
i ] such that the local downward incentive constraint bind for type

θ̂
(k)
i , i.e.,

ui

(
Q

(k)
i , ŝ

(k)
i , θ̂

(k)
i

)
= ui

(
Q

(k−1)
i , ŝ

(k−1)
i , θ̂

(k)
i

)
.

Notice that if Q(k)
i > Q

(k−1)
i , then ŝ

(k)
i > ŝ

(k−1)
i . In this case, even after the modification of

the signal recommendation, the local upward incentive constraint holds due to the single-
crossing assumption (Assumption 2). If Q(k)

i = Q
(k−1)
i , then ŝ

(k)
i = ŝ

(k−1)
i . In this case local

upward incentive constraint holds trivially.
Let (Q,U †) be the interim allocation–utility pair that is induced by deterministic signal

recommendations ŝ
(k)
i . Notice that the recommended signals are adjusted downwards com-

pared to the certainty equivalent signal for the stochastic signal recommendation given in the
direct mechanism. As a result, the interim utilities for all types under the newly constructed
mechanism that induces (Q,U †) weakly improves upon the interim utilities induced by the
direct mechanism (Q,U), i.e.,

U †
i (θi) ≥ Ui(θi), ∀i ≤ n, θi ∈ Θi.

Finally, weak single-crossing property in the utility functions (Assumption 2) also guar-
antees that global incentive constraints hold if the agent is forced to generate the recom-
mended signal when misreporting her type, i.e., when interim participation constraints are
not imposed. Note that the deviating utility for not following the recommendation is at
most 0 because the recommended signal is deterministic, and the interim utilities of the
agents are weakly positive after the modification. Therefore, the participation constraints
are satisfied as well.
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3.1 Discussion on Monotone Allocations

In this section, we have focused on mechanisms with monotone allocations. Restricting
to monotone interim allocations is a practical assumption because of fairness concerns. In
many applications involving government allocating resources, it may be perceived as unfair
to provide higher allocations to lower types (see for instance, Gershkov et al., 2022). For
example, in college admissions, students with greater talent should have a higher probability
of being admitted to a school. In government subsidy programs, people with lower income,
or greater financial need, should have a higher probability of receiving subsidies.

In general, by considering direct mechanisms, the principal can implement a broader
set of allocation rules. In particular, the principal can implement non-monotone allocations
with direct mechanisms. Note that in contrast, with the weak single-crossing condition (As-
sumption 2), only monotone allocations are implementable given direct non-coordination
mechanisms. The main intuition is that given any two deterministic signal recommenda-
tions and associated allocations to the agent, the preference over these two recommendations
are monotone over types, while the monotonicity in preference fails with randomized recom-
mendations. Here we provide a simple example of implementable non-monotone allocation.

Example 3. Consider a simplified single-agent setting where the agent’s type θ is drawn from
a uniform distribution on [0, 2], and the agent’s utility function is x−(s−θ)+. Consider two
options for the agents. The first option has a deterministic signal recommendation. That is,
the agent receives an item with probability 1

2 if the generated signal is 2
3 . The second option

has a random signal recommendation. With probability 1
2 , the agent receives an item with

probability 1
2 if the generated signal is 1

2 , and with the rest probability, the agent receives an
item with probability 1 if the generated signal is 2.

It is easy to verify that if the agent has type θ ∈ [13 ,
3
2 ], the agent prefers the deterministic

signal recommendation and if the agent has type θ ∈ [0, 13 ] ∪ [32 , 2], the agent prefers the
randomized signal recommendation. This is an implementable non-monotone allocation.

In other applications without the exogenous requirement on monotone allocations, we
can still show that restricting attention to monotone allocations is without loss of optimality
for broad classes of signaling costs and objective functions. See Appendix B for detailed
discussions.

3.2 Information Leakage

The main intuition behind the optimality of non-coordination mechanisms is that any form
of coordinating leaks information to the agents. This in effect produces a random recom-
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mendation to the agent based on the leaked information. Under the assumption of weak
monotonicity in certainty equivalence for the cost functions, such random allocation can
be improved by using deterministic recommendations, where the agent is ignorant of any
detailed information regarding the environments, and make the effort choices solely based
on his private type and the prior distributional knowledge.

This intuition can be easily extended to richer models beyond our current framework. For
example, in markets where there is uncertainty in supply and demand (e.g., Kilian, 2009),
i.e., the number of resources and number of participants are drawn from a distribution where
the realization is unobserved to the agents, our results indicate that in such environments,
it is optimal for the designer to disclose no information regarding either the supply or the
demand to the agents before asking the agents to make their effort choices. Similarly,
when the resources to be allocated are differentiated in qualities and there is uncertainty in
qualities (e.g., Akerlof, 1970), it is also optimal to run non-coordination mechanisms without
revealing information about the true qualities.

3.3 Implementation as Coarse Ranking Contests

We show that in symmetric environments, any symmetric direct non-coordination mecha-
nism has an indirect implementation as the coarse ranking contest. Specifically, in coarse
ranking contest, there may exist segments of signals that are pooled and assigned the same
rank. The items are allocated to the k agents with the highest coarse rankings, with ties bro-
ken uniformly at random. This generalizes the concept of a contest as commonly presented
in the literature.

Definition 4 (coarse ranking). Given any countable set of disjoint open intervals {(s(j), s̄(j))}∞j=1

whose union is a subset of the type space, the coarse ranking of agent i under the signal profile
s = (s1, . . . , sn) is

ri(s) =
∣∣∣{i′ ̸= i, 1 ≤ i′ ≤ n : si′ > s̄(j)

}∣∣∣ ,
and the number of ties for agent i is

zi(s) =
∣∣∣{i′ ̸= i, 1 ≤ i′ ≤ n : s̄(j

′) = s̄(j)
}∣∣∣+ 1.

Here, for any signal si, j is the index such that si ∈ (s(j), s̄(j)), if such a j exists (i.e., if
si falls into one of the intervals defined). If no such j exists (i.e., if si lies outside all the
intervals defined), then (slightly overloading the notation) we let s̄(j) = s(j) = si. We also
call the pair of functions (r, z) a coarse ranking.

Intuitively, each interval in the set {(s(j), s̄(j))}∞j=1 specifies a region of signals that are
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pooled and assigned the same (coarse) ranking. Outside the closure of the union of these
intervals, signals are ranked strictly. In the special case where {(s(j), s̄(j))}∞j=1 is empty, the
definition of a coarse ranking coincides with the usual definition of a strict ranking, where
the agents’ ranks are given by the order of their signals in the given signal profile.

Our generalization of strict rankings to coarse rankings leads to a larger class of contest
rules, defined as follows. For any coarse ranking (r, z) and any agent i, the induced (coarse
ranking) contest rule is

x̃i(s; r, z) =


1, k ≥ ri(s) + zi(s),

k−ri(s)
zi(s)

, k ∈ (ri(s), ri(s) + zi(s)),

0, k ≤ ri(s).

Definition 5 (coarse ranking contest rule). A mapping profile x : S → X is a coarse
ranking contest rule if there exists a coarse ranking (r, z) such that xi(s) = x̃i(s; r, z) for
each i.

The class of coarse ranking contest rules, which is a subset of the class of all mappings
from the signal space to the allocation space, also includes the class of contest rules that
allocate items (prizes) to agents based on the strict ranking of their signals such as all-pay
contests (Fu and Wu, 2019). The proof of the proposition is provided in Appendix A.1.

Proposition 1. In symmetric environments, any symmetric interim allocation–utility pair
(Q,U) that is implementable by a direct non-coordination mechanism has an indirect imple-
mentation that is a randomization over the coarse ranking contests.

3.4 Suboptimality of Non-coordination

In this section, we have shown that non-coordination mechanisms are optimal if the utility
function satisfies weak monotonicity in certainty equivalence for costly signaling. In this part,
we will provide a partial converse showing that direct mechanisms can strictly outperform
non-coordination mechanisms when the assumption is violated.

Assumption 4. The utility function satisfies strictly decreasing in certainty equivalence
if for any non-degenerate distribution G over signals, the certainty equivalence Σ(G, θ) is
strictly decreasing in θ.

Assumption 5. For any agent i, the utility function ui is continuous in all of its coordinates,
bounded in value, strictly increasing in xi and θi, and strictly decreasing in si.
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Proposition 2 (Sub-optimality of non-coordination). For any utility function that satisfies
Assumption 2, 4 and 5, there exists a distribution F such that for any (Q,U) with a strictly
increasing Q that is implemented by a non-coordination mechanism, there exists another
interim utility U † such that (Q,U †) is implemented by a direct mechanism and outperforms
it, i.e., U †

i (θi) ≥ Ui(θi) for all agents i and type θi, and there exists a type such the inequality
is strict.

Proof. Given any utility function of the agents, consider a type distribution where Fi has
binary support for all agent i, denoted by {θi, θ̄i} where θi < θ̄i. Given any strictly increasing
interim allocation Qi, let si < s̄i be the recommended signals for agents with types θi

respectively θ̄i in the non-coordination mechanism. It is easy to verify that in the optimal
non-coordination mechanism, si = 0.

Since the utility function is continuous and strictly increasing in s and s̄i is strictly
positive, there exists a non-degenerate distribution Gi over signal recommendations such
that agent with type s̄i is indifferent between signal recommendation Gi and deterministic
signal recommendation s̄i. Moreover, by Assumption 4, the utility of type si for misreporting
as type s̄i is strictly lower given Gi compared to deterministic signal recommendation s̄i.
Therefore, there exists G′

i that first order stochastically dominates Gi such that the utility
of type si for obtaining signal recommendation G′

i and s̄i are the same. By offering signal
recommendation si to type θi with interim allocation Qi(θi), and offering randomized signal
recommendation G′

i to type θ̄i with interim allocation Qi(θ̄i) in the general mechanism, the
utility of all types weakly improves, and the utility of type θ̄i strictly improves.

4 Characterization of Optimal Mechanism

In this section, we characterize the optimal non-coordination mechanism when the principal
optimizes the weighted average between the social welfare and the agents’ utilities, i.e.,∑

i∈[n]

Eθi∼Fi
[Wi(Qi(θi), θi) + wi(θi) · Ui(θi)] .

Note that characterizing the optimal mechanisms in general even with the restriction
to non-coordination mechanism is challenging without any further structural assumption
on the agents’ utility functions. Therefore, for tractability reasons, in this section, we will
focus on utility functions that are additively separable, i.e., for any agent i, there exists a
valuation function vi(xi, θi) and a cost function ci(si, θi) such that the utility function is

ui(si, si, θi) = vi(xi, θi)− ci(si, θi).
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Moreover, we will consider two special forms of cost functions. In the first case, the signal
is mutiplicatively separable in type and effort, i.e., ci(si, θi) = si

θi
. This is an assumption

commonly seen in the signaling literature and the contest design literature (e.g., Spence,
1973; Fang et al., 2020). In the second case, we assume that each agent’s signal can be costly
inflated upon his type by manipulation effort, i.e., ci(si, θi) = (si − θi)

+. This assumption
is more commonly found in papers dealing with falsification (e.g., Perez-Richet and Skreta,
2022).

Symmetric environment. To simplify the exposition, in the rest of the paper we
assume that the agents are ex-ante homogeneous, i.e., Θi = Θ = [θ, θ̄] and Fi = F for all i.
In addition, we assume that the density function fi exists for all i, and fi(θi) > 0 for any
θi ∈ [θi, θ̄i].

4.1 Multiplicatively Separable Cost

We first consider the case where the costs are multiplicatively separable.

Definition 6 (multiplicatively separable cost). For any agent i, there exists an increasing
function hi(si) and a decreasing function gi(θi) such that ci(si, θi) =

hi(si)
gi(θi)

for any θi ∈ Θi

and si ∈ Si.

With multiplicatively separable cost (Definition 6), the utility of agent with type θ can
be represented as

ui(xi, si, θi) = vi(xi, θi)−
hi(si)

gi(θi)
=

1

gi(θi)
(vi(xi, θi) · gi(θi)− hi(si)) .

Therefore, the behavior of the agent is equivalent to one with utility function vi(xi, θi) ·
gi(θi)−hi(si). By viewing hi(si) as the quasilinear transfers in the model, solving the optimal
mechanism boils down to the classical single-dimensional screening with quasilinear transfer
under single-crossing properties. The characterization of the optimal mechanism is standard
in this case, and similar characterizations can be found in Hartline and Roughgarden (2008);
Akbarpour et al. (2024).

4.2 Costly Falsification

We consider the case where it is costly for the agents to mimic higher types. The cost
for downward deviation is zero. This captures, for example, applications where allocations
are based on agents’ performance evaluations, and where agents can easily reduce their
performance.
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Definition 7 (costly falsification). For any agent i, any θi ∈ Θi and si ∈ Si, ui(xi, si, θi) =
xi − η · (si − θi)

+.

In this case, since the utilities are still separable, one naive approach is to treat the
allocation x as the quasilinear transfers in standard screening models, with the costly signals
viewed as the allocations. However, this approach does not work immediately since we have
a non-trivial feasibility constraint on the allocations (see Lemma 3 for characterizations of
the interim feasibility constraints), and this would translate into a non-trivial feasibility
constraint on the transfers in the otherwise standard screening model. To resolve this
complication, instead of transforming our problem in the way described above, we directly
characterize the optimal mechanism using optimal control.

In this section, we focus on mechanisms with monotone allocation rules. This is shown
to be without loss of optimality in Appendix B for utility functions that include the one
described in Definition 7. Under the restriction of monotone allocations, Theorem 1 implies
that it is without loss to focus on non-coordination mechanisms. We characterize the optimal
non-coordination mechanism for a simpler objective of

Objα(Q,U) = Eθ

[
α ·
∑
i

θi ·Qi(θi) + (1− α) ·
∑
i

Ui(θi)

]
. (1)

In this objective function, all agents are treated equally. The parameter α ∈ [0, 1] captures
the relative weights between the allocation efficiency and the agents’ utilities.

Symmetric mechanism. Note that finding the optimal mechanism is not a convex pro-
gram. This is because, even though the objective function is linear, the incentive constraints
(IC) are not convex with the cost function defined in Definition 7. Specifically, a convex com-
bination of two allocation–utility pairs may violate the (IC) constraints. Nonetheless, as we
show in the following lemma, the optimal non-coordination mechanism for this non-convex
optimization problem is always symmetric in symmetric environments.

Lemma 1. The optimal non-coordination mechanism is symmetric for any α ∈ [0, 1].

If we restrict our attention to symmetric mechanism, the problem of designing the opti-
mal mechanism reduces to the single-agent optimization problem for any particular agent i.
When there is no ambiguity, we omit the subscript i from the notation for this single-agent
problem; we use the interim allocation rule Q and the utility function U for a single agent to
refer to the interim allocation profile and the interim utility profile, respectively. Let QE(θ)

be the interim allocation rule maximizing matching efficiency, i.e., the efficient allocation
rule. The optimization problem can then be reformulated as follows:
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V̂α = sup
Q,U

Eθ[α · θ ·Q(θ) + (1− α) · U(θ)]

s.t. Q is monotone,∫ θ̄

θ
Q(z) dF (z) ≤

∫ θ̄

θ
QE(z) dF (z) ∀θ ∈ [θ, θ̄],

(Q,U) satisfies (IC).

(P̂α)

The second inequality constraint is the interim feasibility constraint (ÎF) characterized in
Che et al. (2013). See Lemma 3 for a detailed discussion.

Optimal mechanisms. Let (Qα, Uα) be the optimal solution for Problem (P̂α).14 The
following theorem implies that the optimal allocation partitions the type space into three
types of intervals.

Theorem 2. For any α ∈ (0, 1), the optimal non-coordination mechanism (Qα, Uα) de-
fines an interval partition {(θ(j), θ̄(j))}∞j=1 of the type space.15 For any j ≥ 1, the interval
(θ(j), θ̄(j)) belongs to exactly one of the following three regions:16

(1) It belongs to the no-tension region if Qα(θ) = Uα(θ) = QE(θ) and U ′
α(θ) < η for any

type θ ∈ (θ(j), θ̄(j)).

(2) It belongs to the no-effort region if Qα(θ) = Uα(θ) and U ′
α(θ) = η for any type θ ∈

(θ(j), θ̄(j)), and

∫ θ̄(j)

θ(j)
Qα(θ) dF (θ) =

∫ θ̄(j)

θ(j)
QE(θ) dF (θ).

(3) It belongs to the efficient region if Qα(θ) = QE(θ) > Uα(θ) and U ′
α(θ) = η for any type

θ ∈ (θ(j), θ̄(j)).

For arbitrary n, k and distribution F , the allocation rule can be quite complex even with
our characterization, as both the number of intervals in each region and their ordering may
exhibit complex dependencies on the shape of the efficient allocation rule and the coefficient
α. In Section 5.1, we derive a sharper characterization of the optimal mechanism in large
markets.

14The existence of an optimal allocation rule is guaranteed by the compactness of the constraint
set and the continuity of the objective functional.

15If the partition is finite, say, consisting of only K disjoint intervals, then θ(j) = θ̄(j) for all j > K.
16The definitions of the interim allocation and utility on the cutoff points {θ(j)}∞j=1 do not affect

the objective value.
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Table 1: Regions of the type space for the optimal mechanism

(IC) binds (ÎF) binds effort Qα

no-tension region × ✓ = 0 = QE

no-effort region ✓ × = 0 ̸= QE

efficient region ✓ ✓ > 0 = QE

The proof of Theorem 2, given in Appendix A.2, uses tools from optimal control. Intu-
itively, we can view the principal’s problem as an optimization problem with two constraints,
(ÎF) and (IC). Under optimality, either one of the constraints binds or neither of them binds.
When (ÎF) binds, the optimal allocation rule and the efficient allocation rule coincide. If the
slope of the efficient allocation rule is no larger than the marginal cost, the efficient alloca-
tion rule can be implemented when no agent exerts effort. This happens in the no-tension
region. However, if the slope of the efficient allocation rule is larger than the marginal cost,
(IC) requires that agents exert positive effort. This happens in the efficient region. In the
second case, the principal can also consider the option of not allocating the items efficiently,
i.e., letting (ÎF) be slack, so that agents have no incentive to exert effort, i.e., (IC) binds,
which would imply that the optimal allocation and utility coincide. This happens in the
no-effort region. Table 1 summarizes these possibilities.

5 Large Contests

In many applications of interest, the number of participating agents is large. In this section,
we show that optimal non-coordination mechanisms in such settings exhibit particularly
simple structures. To simplify the exposition, we make the following assumption (on top of
symmetric environment assumption) throughout the section. However, the main economic
insights extend without this assumption.

Assumption 6 (continuity). There exist β
1
, β̄1, β2 ∈ (0,∞) such that f(θ) ∈ [β

1
, β̄1] and

f ′(θ) ≥ −β2 for any type θ ∈ [θ, θ̄].

Note that, as shown in Section 3.3, any symmetric non-coordination mechanism can also
be implemented as a coarse ranking contest in arbitrary symmetric environments. Therefore,
in the context of this section, we often refer to the non-coordination mechanism as the
contest.

24



Figure 1: Optimal interim allocation rule under convex QE(θ)

θ
0 1θ(1) θ(2)

QE(θ) = θ2

Qα(θ)

no-tension no-effort efficient
†Suppose n = 2, k = 1, F (θ) = θ2, θ ∈ [0, 1], and η = 1. In this example, the interim efficient allocation rule is
QE(θ) = Fn−1(θ) = θ2, i.e., the highest type gets the item, and Qα(θ) is the optimal interim allocation rule.

5.1 Scarce Resources

In some applications, such as the awarding of prestigious fellowships to university students,
the competition is fierce and the ratio of the number of competing agents to the number of
items available is large. In this subsection, we study the model of Section 2 in the special
case where k = 1 and the number of agents n is very large.17 For sufficiently large n, the
efficient allocation rule becomes convex, which simplifies the characterization of the optimal
contest. The proofs of the results in this subsection are provided in Appendix A.3.

Lemma 2. Let k = 1. Under Assumption 6, there exists a positive integer N such that for
any n ≥ N , the efficient allocation rule QE(θ) is convex in θ.

Convex efficient allocation. First consider the case when the efficient allocation rule
is convex. The optimal contest is then as follows.

Proposition 3. Suppose QE(θ) is convex in θ. For any α ∈ (0, 1), there exist cutoff types
θ ≤ θ(1) ≤ θ(2) ≤ θ̄ such that in the type space of each agent in the optimal contest Qα, the
interval (θ, θ(1)) is the no-tension region, (θ(1), θ(2)) is the no-effort region, and (θ(2), θ̄) is
the efficient region.

Figure 1 illustrates the optimal interim allocation rule arising from a convex efficient
allocation rule in an example with two agents. Figure 2 illustrates the corresponding ex
post rule that maps type profiles to allocations. Intuitively, when the efficient allocation

17When k is a small constant greater than 1, the analysis is significantly more involved. We omit
this case here since the economic insights it yields are similar.
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Figure 2: Implementation of the optimal allocation rule

θ2

θ1
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θ(2)

randomized

agent 2 wins

agent 1 wins

no-tension no-effort efficient

no-tension

no-effort

efficient

†Suppose n = 2, k = 1, F (θ) = θ2, θ ∈ [0, 1]. When both agents produce signals in (θ(1), θ(2)), the item is allocated
randomly, but the agent with the higher signal has a higher probability (which is strictly less than 1) of getting the
item. When at least one agent produces a signal outside (θ(1), θ(2)), the item is allocated to the agent with a higher

signal.

is convex, its derivative crosses η from below only once. Therefore, for low types, there is
no tension: the derivative of the efficient allocation is small enough so that, in the optimal
contest, the item can be allocated efficiently without any effort on the part of the agents.
For high types, since the change in the efficient allocation is large, the incentive constraints
bind and the interim utility must be linear. Moreover, in order for the interim allocation to
be interim feasible, in the region where the utility is linear, the no-effort region must occur
before the efficient region, not the other way around.

It is interesting to note that in the optimal contest when the efficient allocation rule is
convex, there is distortion for middle types but not for high or low types. This stands in
sharp contrast to the classical auction design setting, where distortions typically occur for
low types.

Convergence results. Using Lemma 2 and Proposition 3, we can immediately char-
acterize the optimal contest for the allocation of scarce resources across a large number of
agents. Moreover, we show that as the number of agents increases, the no-tension region
converges to the full type space. Since the contest format in the no-tension region is WTA,
this implies that in the limit, the format of the optimal contest is essentially WTA.

Theorem 3 (convergence of contest format). Let k = 1. Under Assumption 6, for any
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α ∈ (0, 1), there exists N such that for any n ≥ N , the optimal contest takes the form
described in Proposition 3. Moreover, as n goes to infinity, the no-tension region converges
to the entire type space.

Given this convergence result, it may appear tempting to use the WTA contest as an
approximation of the optimal contest for a large finite number of agents. However, as shown
in Theorem 4 below, the principal’s payoff under the WTA contest does not converge to her
payoff under the optimal contest as the number of agents increases. This is because in the
optimal contest, by randomizing the allocation for a small range of high types, the principal
can significantly increase the agents’ expected utilities while keeping the loss in matching
efficiency small.

For any interim allocation rule Q that is implementable by a contest, by Proposition 4,
there exists a unique interim utility U with U(θ) = Q(θ) such that (Q,U) is implementable
by a contest and yields a weakly higher payoff for the principal than any other mechanism
(Theorem 1). Denote this payoff by Vα(Q), i.e.,

Vα(Q) = sup{Objα(Q,U) : U(θ) = Q(θ) and (Q,U) is implementable by a contest}.

Theorem 4 (non-convergence in payoffs). Let k = 1. Under Assumption 6, for any α ∈
(0, 1) and any sufficiently small ϵ > 0, there exists NF,ϵ such that for any finite n > NF,ϵ,
the ratio between the principal’s payoff in the optimal contest and her payoff in the WTA
contest is at least δ ≜ (θ̄−ϵ)·α+1−α

θ̄·α+(1−α)(1− 1
e
+ϵ)

> 1; that is, Vα(Qα,n)
Vα(QE,n)

≥ δ.

Note that our framework enables us to completely characterize the optimal contest for
a large but finite number of agents. For comparison, Olszewski and Siegel (2016, 2020)
approximate equilibria in contests using a continuum model. Our finding that the optimal
contest format converges to the WTA format is consistent with the results of Olszewski
and Siegel (2016), but the non-convergence of the optimal payoff (Theorem 4) stands in
contrast to their work. The non-convergence in payoff result highlights the importance of
randomizing the allocations for top types in practical applications to reduce the cost of
wasteful signals.

5.2 Large-Scale Economy

In applications such as college admissions and affordable housing programs, the resources
to be allocated are not necessarily scarce. To model such situations, consider a setting with
n agents and 0 < k < n items, and replicate both the agents and the items z ∈ N+ times.
The parameter z captures the scale of the economy. As the scale z goes to infinity, the

27



Figure 3: Optimal allocation and utility for large-scale economy in the limit

θ
θ θ̄θcθ(1) θ(2) θ(3)

— QE(θ)

— Qα(θ)

−− Uα(θ)

−− UE(θ)

†Types in (θ(1), θ(2)) are called middle types; in the optimal contest, their utilities are higher than under efficient
allocation, because they do not exert effort. Types above θ(2) are called high types; in the optimal contest their

utilities are weakly greater, or in some cases strictly greater, because they each exert less effort.

efficient allocation rule in this setting converges to the cutoff rule, under which the items
are allocated to the top k

n of the types. Efficient allocation hence creates strong incentives
for types close to the cutoff to exert wasteful effort. Theorem 5 shows that in the optimal
contest, to eliminate these incentives, the principal randomizes the allocation for types close
to the cutoff. Let θc be the cutoff type, defined by Pr[θ ≥ θc] =

k
n .

Theorem 5. Under Assumption 6, for any α ∈ (0, 1) and any fixed integers n > k > 0,
there exists Z such that for any integer z ≥ Z, in a setting with z · n agents and z · k
items, there exist cutoff types θ ≤ θ(1) < θc < θ(2) ≤ θ(3) ≤ θ̄ such that in the type space of
each agent in the optimal contest, the intervals (θ, θ(1)) and (θ(3), θ̄) comprise the no-tension
region, (θ(1), θ(2)) is the no-effort region, and (θ(2), θ(3)) is the efficient region.

Intuitively, in the limit, the efficient allocation rule converges to a step function, with
only types above θc receiving the items. The interim utility under efficient allocation is
thus represented by the blue curve in Figure 3. In order to increase the weighted average
between the matching efficiency and the sum of the expected utilities, the principal can
randomize the allocation for types around the cutoff θc, i.e., within (θ(1), θ(2)). This leads to
an efficiency loss of at most θ(2) − θ(1) when an item is allocated inefficiently, but increases
the utilities for all types within (θ(1), θ(3)). When θ(1) is sufficiently close to θ(2), the increase
in expected utility is significantly larger than the efficiency loss. Therefore, the principal
can increase her payoff by randomizing on (θ(1), θ(2)). Finally, for types that are sufficiently
low or sufficiently high, it is easy to verify that both the matching efficiency and the sum
of the agents’ utilities are maximized under efficient allocation. In Appendix A.4, we show
that this intuition applies when the scale of the economy is finite but sufficiently large.

Our result is reminiscent of Director’s law, which states that public programs tend to
be designed primarily to target the middle classes. Specifically, although the principal cares
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about the utilities of all of the agents, the optimal contest gives preferential treatment to
the middle types, in the sense that they obtain higher utilities than they would in a fully
competitive setting where items are allocated efficiently. This is optimal for the principal
because it induces the middle types to exert no effort, which weakly (strictly) decreases the
effort level for all (some) of the higher types. This reasoning is also in line with the empirical
results of Krishna et al. (2022), who show (using data from Turkey) that randomizing
the allocation of college seats to students, especially those with low scores, reduces overall
student stress.

6 Conclusions

In this paper, we study the design of optimal screening mechanisms for allocating limited
resources to multiple agents based on costly signals. We show that, to reduce socially
wasteful costs, it is optimal to implement a non-coordination mechanism in which each
agent determines their costly signals without knowledge of any additional information, such
as the type reports or signal choices of other agents, beyond the prior belief. We further
characterize the optimal non-coordination mechanism and show that it exhibits features
consistent with findings in real-world applications.

Our paper opens the door to several promising future lines of research. First, it remains
unclear how to characterize the optimal mechanism with fully general signaling costs, and
novel techniques may be needed to address this challenge. Second, revisiting the literature
on money burning and costly signaling in various applications could help identify additional
optimal mechanism structures when signaling costs take a general form, as in our paper.
Finally, our work connects to the signaling game literature (e.g., Spence, 1973) by replacing
a competitive market with a monopolistic market designer. Investigating the middle ground
using oligopoly models, where competition exists but is not fully competitive, would be an
intriguing next step.
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FOR ONLINE PUBLICATION

A Omitted Proofs

A.1 Proofs for Additional Discussions

Proof of Proposition 1. For any symmetric interim allocation–utility pair (Q,U) that is im-
plementable by a non-coordination mechanism, by definition, there exists a mapping from
the signal space to the allocation space x(ŝ) specifying the allocation for each agent given
the generated signal ŝ.18 The distribution over types F (θ) induces a distribution over sig-
nals; call it F̂ (s). Similarly, a feasibility constraint on the allocation rule defined in the
signal space may be induced by (ÎF) based on F̂ . Such operations are valid since the rec-
ommended signal is a non-decreasing function of the type. By Theorems 1 and 2 in Kleiner
et al. (2021), any monotone feasible allocation rule x can be written as a convex combination
of the extreme points. Using the construction of the extreme points in Theorem 3 of Kleiner
et al. (2021), one can easily verify that the extreme points are the coarse ranking contest
rules defined in Definition 5. Hence x can be expressed as a randomization over the coarse
ranking contest rules. Notice that the above operations do not affect the agents’ incentives
by preserving the distribution over outcomes; hence the expected utility of each agent in the
coarse ranking contest is still U .

A.2 Proofs for Costly Falsification

Lemma 3 (Che et al., 2013). Given a set A =
∏n

i=1Ai ⊂ Θ, let w(θ,A) = | {i : θi ∈ Ai} |
be the number of agents whose type θi is in Ai.19 The interim allocation rule Q is interim
feasible if and only if∑

i

∫
Ai

Qi(θi) dFi(θi) ≤
∫
A
min {k,w(θ,A)} dF (θ) ∀A =

n∏
i=1

Ai ⊂ Θ. (IF)

18Notice that such a mapping might not exist if (Q,U) is implementable by a direct mechanism
that is not a non-coordination mechanism.

19Here, | · | denotes the cardinality of a set.
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Moreover, for monotone allocations in symmetric environments, (IF) is equivalent to the
following:20

∫ θ̄

θ
Q(z) dF (z) ≤

∫ θ̄

θ
QE(z) dF (z), ∀θ ∈ [θ, θ̄], (ÎF)

where QE(θ) =
∑k−1

j=0

(
n−1
j

)
·(1−F (θ))j ·Fn−1−j(θ) is the interim allocation rule for allocating

k items efficiently.

Incentive compatibility. First we characterize the incentive compatibility conditions
in any direct mechanism that implements a monotone allocation rule.

Lemma 4. An interim allocation–utility pair (Q,U) with monotone Q is implementable by
a non-coordination mechanism if and only if Q is interim feasible, and for any agent i with
type θi,21

(1) U ′
i(θi) ∈ [0, η]; (2) Ui(θi) ≤ Qi(θi); (3) U ′

i(θi) = η if Ui(θi) < Qi(θi). (IC)

The idea behind Lemma 4 is as follows. For any interim allocation–utility pair (Q,U)

that is implementable by a non-coordination mechanism, there is a level constraint and
a slope constraint on interim utility. The level constraint is intuitive: because the effort
costs are non-negative, each agent’s utility is bounded above by his allocation. The slope
constraint says that the marginal increase in the interim utility is bounded above by the
marginal cost of effort; if this were not the case, then a low type would have an incentive
to misreport and produce the recommended signal for a higher type. Finally, if the level
constraint is slack at any type θ, the equilibrium effort for type θ must be strictly positive.
In order to eliminate the incentives for higher types to deviate to θ, the slope constraint
must be binding at type θ.

Proof of Lemma 4. We will prove each direction of the if-and-only-if condition separately.

Only if: If (Q,U) is implementable by a non-coordination mechanism, there exist a
signal recommendation policy ŝ and an allocation rule x that induce (Q,U). The allocation
rule Q satisfies interim feasibility, because it is induced by the ex-post allocation rule qi(θ) =

20In a symmetric environment, by a slight abuse of notation, we use F = Fi for all i to denote
each agent’s type distribution.

21The function Ui may not be differentiable everywhere. For any type θi such that Ui is not
differentiable at θi, we let U ′

i(θi) denote any subgradient (or simply the left and right derivative) of
the function Ui. It is not hard to show that Ui is a monotone function and hence is differentiable
almost everywhere.
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xi(ŝi(θi), ŝ−i(θ−i)) for all i and θ. Notice that for any signal recommendation policy ŝ and
allocation rule x implementing (Q,U), it is without loss to assume that any realization
of the recommendation ŝi(θi) is weakly higher than θi. This is because weakly increasing
a signal recommendation below θi does not induce type θi to exert additional effort, but
weakly decreases other types’ incentives for deviation.

For any agent i and any pair of types θi < θ′i, let s′i be the largest signal realization
given ŝi(θ

′
i). Thus we have s′i ≥ θ′i. Note that agent i with type θ′i obtains utility Ui(θ

′
i)

from choosing signal s′i, as he must be indifferent for all his signal realizations. Therefore,
agent i’s utility from reporting signal s′i when his type is θi is

Eθ−i

[
xi(s

′
i, ŝ−i(θ−i))

]
− η · e(s′i, θi) = Eθ−i

[
xi(s

′
i, ŝ−i(θ−i))

]
− η · e(s′i, θ′i)− η · (θ′i − θi)

= Ui(θ
′
i)− η · (θ′i − θi).

Since his utility from deviating in his choice of signal is weakly lower, we have

Ui(θi) ≥ Ui(θ
′
i)− η · (θ′i − θi).

By rearranging the terms and taking the limit as θ′i → θi, we obtain U ′
i(θ) ≤ η. Similarly,

let si be the largest signal realization given ŝi(θi). We have

Ui(θ
′
i) ≥ Eθ−i

[xi(si, ŝ−i(θ−i))]− η · e(si, θ′i)

≥ Eθ−i
[xi(si, ŝ−i(θ−i))]− η · e(si, θi) = Ui(θi).

Again by rearranging the terms and taking the limit as θ′i → θi, we have U ′
i(θ) ≥ 0. Hence

U ′
i(θi) ∈ [0, η] for any type θi.

Finally, as the effort is non-negative, the interim allocation must be weakly larger than
the interim utility. When the inequality is strict, the agent must choose signal realizations
strictly higher than his type with positive probability. In this case, we have si > θi. For any
type θ′i ∈ (θi, si), we have

Ui(θ
′
i) ≥ Eθ−i

[xi(si, ŝ−i(θ−i))]− η · e(si, θ′i)

= Eθ−i
[xi(si, ŝ−i(θ−i))]− η · e(si, θi) + η · (θ′i − θi)

= Ui(θi) + η · (θ′i − θi).

By rearranging the terms and taking the limit as θ′i → θi, we obtain U ′
i(θi) ≥ η. Since we

also know that U ′
i(θi) ≤ η, both inequalities must be equalities and hence U ′

i(θi) = η.
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If: Since Q is interim feasible, there exists an ex-post allocation rule q that implements
Q. Consider the signal recommendation policy ŝ where ŝi(θi) = θi +

1
η (Qi(θi)− Ui(θi)) for

any agent i with type θi. It is easy to verify that ŝi(θi) is monotone in θi, since Q′
i(θi) ≥ 0

and U ′
i(θi) ≤ η. Let θi(si) be the inverse of function ŝi.22 Consider the allocation rule x

where xi(s) = qi(θ(s)) for all agents i. We show that ŝ and x implement (Q,U).
First, by our construction, when all agents follow the recommendations, the interim

allocation and the interim utility coincide with Q and U , respectively. Thus, it is sufficient
to show that the agents have weak incentives to follow the recommendations. In particular,
if agent i with type θi deviates to reporting type θ′i > θi, his utility from deviation is

Qi(θ
′
i)− η · e(ŝi(θ′i), θi) = Ui(θ

′
i)− η · (θ′i − θi) ≤ Ui(θi),

where the last inequality holds because the derivative of U is always at most η. We now
analyze the incentives for downward deviation in three cases. If the deviation type θ′i < θi

satisfies Qi(θ
′
i) = Ui(θ

′
i), the utility from deviation is

Qi(θ
′
i)− η · e(ŝi(θ′i), θi) = Ui(θ

′
i) ≤ Ui(θi).

If the deviation type θ′i < θi satisfies Qi(θ
′
i) > Ui(θ

′
i), let θ†i > θ′i be the smallest type such

that Qi(θ
†
i ) = Ui(θ

†
i ). If θi ≥ θ†i , the utility from deviation is

Qi(θ
′
i)− η · e(ŝi(θ′i), θi) ≤ Qi(θ

†
i ) = Ui(θ

†
i ) ≤ Ui(θi).

If θi < θ†i , the derivative of U for any type between θ′i and θi must be constant and equal to
η. Hence the utility from deviation is

Qi(θ
′
i)− η · e(ŝi(θ′i), θi) ≤ Ui(θ

′
i) + η · (θi − θ′i) = Ui(θi).

Combining these inequalities, we conclude that none of the agents have any incentive to
deviate from the recommendations.

Payoff equivalence. From Lemma 4 we can establish Proposition 4, which says that
for any allocation–utility pair implementable by a non-coordination mechanism, the utility
function for each agent is uniquely pinned down by the interim allocation, up to the choice
of the utility for the lowest type.

22Note that ŝi(θi) is only weakly monotone. When there are multiple types θi with the same
signal recommendation si, we map si randomly to those types according to the type distribution Fi.
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Proposition 4. Fix any monotone and interim feasible allocation rule Q, and any {ui}ni=1

such that ui ≤ Qi(θi) for all i. There exists a unique interim utility profile U with Ui(θi) = ui

for all i such that (Q,U) is implementable by a non-coordination mechanism. Moreover,
for any interim allocation–utility pair (Q,U †) that is implementable by a non-coordination
mechanism, we have the following:

• If Ui(θi) > U †
i (θi) for any agent i, then Ui(θi) ≥ U †

i (θi) for every agent i and every
type θi.

• If Ui(θi) = U †
i (θi) for any agent i, then Ui(θi) = U †

i (θi) for every agent i and every
type θi.

In the classical mechanism design setting, payoff equivalence means that once the alloca-
tion is determined, the curvature of the utility function is fixed, and the utility function can
only be shifted by a constant determined by the utility of the lowest type. In our setting,
for a fixed allocation rule, shifting the utility of the lowest type does not shift the utilities
for all types by the same constant. We illustrate this in Figure 4. For any agent i, if the
utility of the lowest type is lower than the interim allocation of the lowest type, or if the
derivative of the interim allocation is larger than the parameter η, then (IC) implies that
the interim utility Ui must be a straight line with derivative η until Ui intersects Qi (in the
example in Figure 4, the intersection occurs at type θ

(1)
i ). Then Ui coincides with Qi until

the derivative of Qi exceeds η. In a setting with discrete types, one could apply this rea-
soning to recursively pin down the interim utility for all types. Unfortunately, the recursive
argument fails to work when the type space is continuous and we provide a formal proof to
circumvent this technicality.

It is immediate from Proposition 4 that the lowest type exerts zero effort in the optimal
non-coordination mechanism, because if we set the utility of the lowest type equal to the
interim allocation, then the utilities of all higher types are weakly increased.

Proof of Proposition 4. For any agent i, given any monotone and interim feasible allocation
Q, and ui ≤ Qi(θi), let

Ui(θi) = min

{
ui + η(θi − θi), inf

θ′i≤θi
Qi(θ

′
i) + η(θi − θ′i)

}
. (2)

Notice that Ui(θi) ≤ Qi(θi), because infθ′i≤θi Qi(θ
′
i)+ η(θi− θ′i) ≤ Qi(θi) for all θi. For those

types θi such that Ui(θi) < Qi(θi), by the definition of Ui, there exists some θ′i < θi such
that Ui(θi) = min {ui + η(θi − θi), Qi(θ

′
i) + η(θi − θ′i)}, implying that U ′

i(θi) = η. For those
types θi such that Ui(θi) = Qi(θi), by definition, Qi(θ

′
i) + η(θi − θ′i) ≥ Qi(θi) for all θ′i < θi.
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Figure 4: Illustration of Proposition 4
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†Both Ui and U†
i implement the allocation rule Qi, but Ui gives agent i a higher utility and hence is the better

implementation from the principal’s point of view. Moreover, Ui and U†
i do not differ by a constant as in the

standard payoff equivalence result (where the constant would equal Ui(θi)− U†
i (θi)). However, by the construction

provided in the proof of Proposition 4, Ui is uniquely identified by the allocation rule and Ui(θi).

This can happen only when Q′
i(θi) < η, implying that U ′

i(θi) < η. Hence (Q,U) satisfies
(IC) and is implementable by a non-coordination mechanism.

Next we show that U is the unique utility profile such that (Q,U) is implementable
by a non-coordination mechanism, given utilities {ui}i=1,...,n for the lowest types. Suppose
U † is a different utility profile such that (Q,U †) is implementable by a non-coordination
mechanism and U †

i (θi) = ui for all i. Then (IC) implies that U †
i (θi) ≤ Qi(θi) for all θi.

Suppose there exists θi such that U †
i (θi) > Ui(θi). This is only possible if Ui(θi) < Qi(θi)

and there exists some θ′i < θi such that Ui(θi) = Qi(θ
′
i) + η(θi − θ′i) < U †

i (θi). However,
this implies that in the direct mechanism (Q,U †), agent i with type θ′i has an incentive to
misreport his type as θi. This contradicts the assumption that (Q,U †) is implementable by
a non-coordination mechanism.

Now suppose there exists θi such U †
i (θi) < Ui(θi). This is only possible if U †

i (θi) < Qi(θi).
Let θ′i = θi if U †

i (θi) < Qi(θi) for all θi. Otherwise, let θ′i = sup{z ≤ θi : U
†
i (θ

′
i) = Qi(θ

′
i)}.

In both cases, by (IC), we have U †
i (θi) = U †

i (θ
′
i) + η(θi − θ′i). In the case where θ′i = θi, we

have

U †
i (θi) = U †

i (θ
′
i) + η(θi − θ′i) < Ui(θi) ≤ ui + η(θi − θ′i),

implying that U †
i (θi) < ui, a contradiction. In the case where θ′i > θi, we can similarly
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infer that U †
i (θ

′
i) < Qi(θ

′
i), which is again a contradiction. Hence, for any interim allocation

rule Q, if there exists an interim utility U such that (Q,U) is implementable by a non-
coordination mechanism, then U is uniquely pinned down by Q and the utility profile for
the lowest types, and it is given by the expression (2).

Finally, for any U † such that (Q,U †) is implementable by a non-coordination mecha-
nism, if U †

i (θi) < Ui(θi) for all i, then by (2) we must have U †
i (θi) ≤ Ui(θi) for all θi.

Optimality of symmetric mechanisms.

Proof of Lemma 1. Consider a relaxed problem (P ′
α) where, instead of the (IC) constraints,

we only require that U ′
i(θi) ∈ [0, η] and Ui(θi) ≤ Qi(θi) for any agent i with type θi. Note

that this is a convex constraint, and hence the relaxed problem is a convex problem. Thus,
there exists a symmetric optimal solution (Q,U) for Problem (P ′

α) if the environment is
symmetric. Moreover, as U is maximized given the derivative constraint and the upper
bound of Q, the allocation–utility pair (Q,U) also satisfies the (IC) constraints by the
proof of Proposition 4. Therefore, (Q,U) is also feasible and hence is an optimal solution
for Problem (P̂α).

Characterization of the optimal mechanism. To simplify the notation in the later
analysis, given the partition of the type space, we add a degenerate interval θ(0) = θ̄(0) = θ̄.

Proof of Theorem 2. By Lemma 4, the optimal utility function Uα must be continuous with
subgradient between 0 and η, and Qα(θ) = Uα(θ) if Q′

α(θ) < η. Therefore, we can partition
the type space into countably many disjoint intervals {(θ(j), θ̄(j))}∞j=1, each of which falls
into one of the following three categories:

Case 1: Qα(θ) = Uα(θ) and U ′
α(θ) < η for any type θ ∈ (θ(j), θ̄(j)).

Case 2: Qα(θ) = Uα(θ) and U ′
α(θ) = η for any type θ ∈ (θ(j), θ̄(j)).

Case 3: Qα(θ) > Uα(θ) and U ′
α(θ) = η for any type θ ∈ (θ(j), θ̄(j)).

For any interim allocation rule Q, let Q(θ) =
∫ θ̄
θ Q(t) dF (t). Notice that Q(θ) is a

continuous function.

Lemma 5. If Q is optimal, then Q(θ)−
∫ θ̄
θ QE(t) dF (t) < 0 implies

(A) U(θ) = Q(θ), and

(B) either U ′(θ) = η or U ′(θ) = 0.
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Corollary 1. If (Q,U) is optimal, then Q(θ) > U(θ) implies Q(θ) −
∫ θ̄
θ QE(t) dF (t) = 0

and Q(θ) = QE(θ) almost everywhere.

Corollary 2. If (Q,U) is optimal, then 0 < U ′(θ) < η implies Q(θ) −
∫ θ̄
θ QE(t) dF (t) = 0

and Q(θ) = QE(θ) almost everywhere.

Corollary 1 implies that in Case 3, we have Qα(θ) = QE(θ) > Uα(θ). Thus Case 3 will
correspond to the efficient region.

The analysis of Case 1 is decomposed into two subcases:

Case 1a: Qα(θ) = Uα(θ) and U ′
α(θ) ∈ (0, η) for any type θ ∈ (θ(j), θ̄(j)).

Case 1b: Qα(θ) = Uα(θ) and U ′
α(θ) = 0 for any type θ ∈ (θ(j), θ̄(j)).

By Corollary 2, in Case 1a, we have Q(θ)−
∫ θ̄
θ QE(t) dF (t) = 0 and Qα(θ) = QE(θ) for any

type θ ∈ (θ(j), θ̄(j)). Therefore, Case 1a corresponds to the no-tension region. Moreover, we
show that Case 1b cannot occur (the proof is deferred to the end of the section). Thus Case
1 gives the no-tension region.

Lemma 6. Case 1b does not occur in the optimal solution.

Finally, for any interval j that corresponds to Case 2, if θ(j) > θ, since the integration
constraint (ÎF) binds for all types within each interval under any of the two other cases, it
must also bind for both endpoints of the interval j; hence

∫ θ̄(j)

θ(j)
Qα(θ) dF (θ) =

∫ θ̄(j)

θ(j)
QE(θ) dF (θ).

If θ(j) = θ, then (ÎF) also binds at θ, since otherwise we could increase the allocation and
utility for a sufficiently small region above type θ without violating feasibility, which would
contradict the optimality of the solution. Hence the above equality again holds, and Case 2
corresponds to the no-effort region.

Proof of Lemma 5. Consider the following relaxation of Problem (P̂α):

sup
Q,U

Eθ[α · θ ·Q(θ) + (1− α) · U(θ)]

s.t.
∫ θ̄

θ
Q(θ) dF (z) ≤

∫ θ̄

θ
QE(z) dF (z) ∀θ ∈ [θ, θ̄],

U(θ) ≤ Q(θ), 0 ≤ U ′(θ) ≤ a.

(R̂α)

Here we have omitted the monotonicity constraint on the allocation, as doing so does not
affect the optimal solution (Theorem 1).
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Define Q(θ) =
∫ θ̄
θ Q(t) dF (t) and Q′(θ) = −Q(θ)f(θ). The relaxed problem can be

rewritten as follows:

sup
Q,U

∫ θ̄

θ
−α · θ · Q′(θ) + (1− α) · U(θ) · f(θ) dθ

s.t. Q(θ) ≤
∫ θ̄

θ
Fn−1(t) dF (t), λ(θ),

U(θ)f(θ) +Q′(θ) ≤ 0, γ(θ),

0 ≤ U ′(θ), κ1(θ),

U ′(θ) ≤ a, κ2(θ).

The Lagrange multipliers λ(θ), γ(θ), κ1(θ), κ2(θ) are non-negative. The Lagrangian is given
by

L̂(Q,Q′, U, U ′, λ, γ, κ1, κ2) = − [αθ · Q′(θ)− (1− α) · U(θ)f(θ)

+ λ(θ)(Q(θ)−
∫ θ̄

θ
QE(t) dF (t))

+ γ(θ)(U(θ)f(θ) +Q′(θ))

+ κ1(θ)(U
′(θ)− a)− κ2(θ)U

′(θ)].

The solution of the problem satisfies the following conditions:

(1) The Euler–Lagrange conditions,23

∂L̂
∂Q

− d

dθ

∂L̂
∂Q′ = 0 ⇔ λ(θ)− (α+ γ′(θ)) = 0 (EL-1)

and
∂L̂
∂U

− d

dθ

∂L̂
∂U ′ = 0 ⇔ (γ(θ)− (1− α))f(θ)− κ′(θ) = 0, (EL-2)

where κ(θ) = κ1(θ)− κ2(θ), hold whenever they are well-defined.

23We are looking for piecewise continuous solutions (the state variables are continuous and the
control variables are piecewise continuous), since, in principle, the allocation Q(θ) may be merely
piecewise continuous and not continuous, while U(θ) is continuous but its derivative might not
be. The necessary conditions should be the integral form of the Euler–Lagrange conditions, together
with the Erdmann–Weierstrass corner conditions (cf. Clarke, 2013). However, the latter have no bite
here, and we can use the usual form of the Euler–Lagrange conditions, since they do not involve the
state variables or the controls. Notice, though, that the Lagrange multiplier γ(θ) could potentially
be PC1.
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(2) The complementary slackness conditions hold:

λ(θ)(Q(θ)−
∫ θ̄

θ
Fn−1(t) dF (t)) = 0, λ(θ) ≥ 0, (CS-1a)

γ(θ)[U(θ)f(θ) +Q′(θ)] = 0, γ(θ) ≥ 0, (CS-1b)

κ1(θ)[U
′(θ)− a] = 0, κ1(θ) ≥ 0, (CS-1c)

κ2(θ)U
′(θ) = 0, κ2(θ) ≥ 0. (CS-1d)

Suppose Q(θ)−
∫ θ̄
θ QE(t) dF (t) < 0. We show that the following two conditions hold for

the optimal solution:

• U(θ) = Q(θ). (By (CS-1a), λ(θ) = 0 holds in an interval. From (EL-1), we have
γ′(θ) = −α. Hence γ(θ) cannot be a constant in this interval; in particular, γ(θ) ̸= 0

except for at most one point. Combined with (CS-1b), this further implies that
U(θ)f(θ) +Q′(θ) = 0, i.e., U(θ) = Q(θ).)

• Either U ′(θ) = a or U ′(θ) = 0. (Reasoning similarly as for the previous condition, we
have that γ(θ) ̸= 1 − α except for at most one point, which combined with (EL-2)
implies that κ′(θ) ̸= 0 except for at most one point. This means that κ(θ) is not a
constant; in particular, it is not zero. The result follows from applying (CS-1c) and
(CS-1d).)

Proof of Corollary 1. The contrapositive of Lemma 5 is also true: Q(θ) > U(θ) implies
Q(θ)−

∫ θ̄
θ QE(t) dF (t) = 0. By rearranging the terms and taking the derivative with respect

to θ, we have Q(θ) = QE(θ) almost everywhere.

Proof of Lemma 6. Suppose Case 1b occurs. In this case, since U is a continuous function,
Qα(θ) = Uα(θ) = Uα(θ̄

(j)) for any type θ ∈ (θ(j), θ̄(j)). Let j′ be the index of the interval
such that θ̄(j) = θ(j

′). We consider three possible situations for interval j′:

• Interval j′ belongs to Case 1. In this case, the integration constraint (ÎF) binds at
θ(j

′), and U(θ̄(j)) = U(θ(j
′)) = QE(θ

(j′)). Therefore, there exists a constant ϵ > 0 such
that (ÎF) is violated at type θ̄(j) − ϵ, a contradiction.

• Interval j′ belongs to Case 2. In this case, (ÎF) does not bind at type θ(j
′). Suppose

otherwise; then we must have QE(θ
(j′)) ≤ U(θ̄(j)) in order for (ÎF) to hold for type

θ(j
′)+ ϵ given sufficiently small ϵ > 0. However, this would imply that (ÎF) is violated

for type θ̄(j) − ϵ given sufficiently small ϵ > 0.

Next we consider two cases for interval j.
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– θ(j) > θ. In this case, (ÎF) cannot bind at any type θ ∈ [θ(j), θ̄(j)). This is
because if it binds at θ, then Q(θ) = U(θ) > QE(θ). By the continuity of U

and QE, and the constraint that Q ≥ U , there exists a constant ϵ > 0 such
that (ÎF) is violated at θ − ϵ. Thus, there exist ϵ, δ > 0 such that for any type
θ ∈ [θ(j) − ϵ, θ̄(j) + ϵ],

∫ θ̄

θ
Q(z) dF (z) ≤

∫ θ̄

θ
QE(z) dF (z)− δ.

Moreover, we can select ϵ to be sufficiently small to satisfy the additional con-
dition that Q′(θ) ≤ η for any type θ ∈ [θ(j) − ϵ, θ̄(j) + ϵ]. Given a parameter θ∗,
let Q‡ be the allocation such that

(1) Q‡(θ) = Q(θ(j) − ϵ) for any type θ ∈ [θ(j) − ϵ, θ∗];

(2) Q‡(θ) = Q(θ(j) − ϵ) + η · (θ− θ∗) for any type θ ∈ (θ∗, θ∗ + 1
η ·Q(θ̄(j) + ϵ)−

Q(θ(j) − ϵ));

(3) Q‡(θ) = Q(θ̄(j)+ϵ) for any type θ ∈ [θ∗+ 1
η ·Q(θ̄(j)+ϵ)−Q(θ(j)−ϵ), θ̄(j)+ϵ].

The parameter θ∗ is chosen so that

∫ θ̄(j)+ϵ

θ(j)−ϵ
Q‡(z) dF (z) =

∫ θ̄(j)+ϵ

θ(j)−ϵ
Q(z) dF (z).

It is easy to verify that

∫ θ̄(j)+ϵ

θ(j)−ϵ
z ·Q‡(z) dF (z) >

∫ θ̄(j)+ϵ

θ(j)−ϵ
z ·Q(z) dF (z),

since Q‡ shifts allocation probabilities from low types to high types compared
to Q. Therefore, given a sufficiently small constant δ̂ > 0, consider another
allocation–utility pair (Q†, U †) such that

(1) Q†(θ) = Q(θ) and U †(θ) = U(θ) for any type θ ̸∈ [θ(j) − ϵ, θ̄(j) + ϵ];

(2) Q†(θ) = (1− δ̂) ·Q(θ) + δ̂ ·Q‡(θ) and U †(θ) = (1− δ̂) · U(θ) + δ̂ ·Q‡(θ) for
any type θ ∈ [θ(j) − ϵ, θ̄(j) + ϵ].

The new allocation–utility pair (Q†, U †) is feasible and strictly improves the
objective value, a contradiction to the optimality of (Q,U).

– θ(j) = θ. The proof for this case is similar. The only difference is that we
can change the allocation and utility within interval j without worrying about
the continuity of the utility function for lower types. Therefore, using a similar
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construction for Q‡ and (Q†, U †), restricted to the interval [θ(j), θ̄(j) + ϵ] for
sufficiently small ϵ > 0, we can again show that the allocation–utility pair (Q,U)

that contains Case 1b is not optimal.

• Either interval j′ belongs to Case 3, or θ(j
′) is the highest possible type θ̄. In either

case, for the integration constraint (ÎF) to be satisfied within interval j, both the
efficient allocation QE and the interim allocation Q must be strictly above the util-
ity at θ(j

′). Therefore, the allocation within interval j can be increased, relative to
allocations above θ(j

′), without violating the monotonicity. Again we use a similar
construction for Q‡ and (Q†, U †), restricted to the interval [θ(j)−ϵ, θ̄(j)] for sufficiently
small ϵ > 0. Here we add the further operation of increasing the utility U † for types
above θ(j

′) to maintain the monotonicity of the utility function; this only increases
the objective value. Thus, the allocation–utility pair (Q,U) that contains Case 1b is
not optimal.

A.3 Proofs for Scarce Resource

Proof of Lemma 2. Taking the second-order derivative gives us

Q′′
E = (Fn−1)′′ = ((n− 1)Fn−2 · f)′ = (n− 1)((n− 2)Fn−3 · f2 + Fn−2 · f ′)

≥ (n− 1)Fn−3((n− 2)β2
1
− F · β2) ≥ 0

when n ≥ N ≥ 2 + β2

β2
1

.

Proof of Proposition 3. By Theorem 2, there exists a partition of the type space
{(θ(j), θ̄(j))}∞j=1 such that each interval belongs to one of the three cases. It is sufficient
to show that the order of the three cases on the type space cannot be changed in the opti-
mal non-coordination mechanism.

First we show that for j such that interval j is in the no-tension region, it is optimal
for all intervals containing types below θ(j) to be in the no-tension region as well. The
main reason is that by the convexity of the efficient allocation rule, for any type θ ≤ θ(j),
Q′

E(θ) ≤ Q′
E(θ

(j)) ≤ η. Therefore, if we set Uα(θ) = Qα(θ) = Q′
E(θ), the resulting non-

coordination mechanism is feasible and trivially maximizes the objective value.
Let θ(1) be the supremum of the set of all types θ lying in the no-tension region. The

argument in previous paragraph shows that the whole interval (θ, θ(1)) is in the no-tension
region. Moreover, by Theorem 2, Qα(θ

(1)) = Uα(θ
(1)) = QE(θ

(1)), and for any θ ≥ θ(1) we
have U ′

α(θ) = η. Now we consider two cases:
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• If Q′
E(θ

(1)) ≥ η, then by the convexity of the efficient allocation rule, QE(θ) > Uα(θ)

for any type θ > θ(1), which implies that

∫ θ̄(j)

θ(j)
Uα(θ) dF (θ) <

∫ θ̄(j)

θ(j)
QE(θ) dF (θ)

for any interval j with types above θ(1). In this case, θ(1) = θ(2) and the no-effort
region does not exist.

• If Q′
E(θ

(1)) < η, then QE(θ) < Uα(θ) for any type θ sufficiently close to θ(1). Therefore,
for j such that θ(j) = θ(1), interval j must be in the no-effort region. Let θ(2) = θ̄(j).
Note that for the integration constraint to be satisfied in interval j, we must have
QE(θ

(2)) ≥ Uα(θ
(2)) and Q′

E(θ
(2)) ≥ η. Therefore, for any type θ > θ(2), we have

QE(θ) > Uα(θ); hence any interval above type θ(2) is in the efficient region.

Proof of Theorem 3. By Lemma 2, for sufficiently large n, the efficient allocation rule is
convex. Therefore, the interim allocation rule of the optimal non-coordination mechanism
takes the form described in Proposition 3.

Let Qα,n(θ) and the QE,n(θ) be the optimal interim allocation rule in a non-coordination
mechanism and efficient allocation rule respectively with n < ∞ agents. For any finite n,
we have that

1

n
≥
∫ θ̄

θ
(1)
n

QE,n(θ) dF (θ) ≥
∫ θ̄

θ
(1)
n

(
η · (θ − θ(1)n ) +QE,n(θ

(1)
n )
)
dF (θ).

The first inequality holds because the ex-ante probability that a given agent gets the item
is at most 1

n , and the second inequality holds because the efficient allocation majorizes the
interim allocation, since the latter is again at least the interim utility. Since QE,n(θ

(1)
n ) is

non-negative, we have that ∫ θ̄

θ
(1)
n

(θ − θ(1)n ) dF (θ) ≤ 1

nη

for any n. Note that 1
nη converges to 0 as n approaches infinity. In order for the inequality

to hold, θ(1)n must also converge to θ̄ as n approaches infinity.

Proof of Theorem 4. First we present Lemma 7, whose proof is given later in this section.
Lemma 7 says that given the efficient allocation rule, the sum of the expected utilities of the
agents is small compared to the best scenario, i.e., the scenario in which the highest type
gets the item without exerting effort, which is 1.
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Lemma 7. For any ϵ > 0, there exists N0 ≥ 1 such that for any n ≥ N0, we have n ·
Eθ∼F [UE,n(θ)] ≤ 1− 1

e + ϵ.

Intuitively, this means that competition is high among agents with sufficiently high types.
Thus agents with high types need to exert high effort to ensure a large allocation, leading
to a utility loss relative to the first-best utility. By applying Lemma 7, we obtain an upper
bound on the performance of the WTA contest. That is, for any ϵ > 0, there exists N0 such
that for any n ≥ N0, we have

n · Vα(QE,n) = nα · Eθ∼F [θ ·QE,n(θ)] + n(1− α) · Eθ∼F [UE,n(θ)]

≤ α · θ̄ + (1− α) ·
(
1− 1

e
+ ϵ

)
.

The inequality holds by Lemma 7 and the fact that the upper bound on the type of the
agent winning the item is θ̄.

Next we provide a lower bound on the performance of the optimal contest. In particular,
for any n large enough, consider a feasible allocation

Qn(θ) =

{
QE,n(θ) if θ ≤ θ̂n,

η · (θ − θ̂n) +QE,n(θ̂n) if θ > θ̂n,

such that Eθ∼F [Qn(θ)] = Eθ∼F [QE,n(θ)] =
1
n . Let Un(θ) = Qn(θ). Notice that (Qn, Un)

satisfies the (IC) constraints. Moreover, Qn(θ) induces no effort and hence Eθ∼F [Un(θ)] =
1
n .

In the following lemma (proved at the end of this section), we show that the matching
efficiency of the given allocation rule converges to the optimal welfare when the number of
agents is sufficiently large.

Lemma 8. For any ϵ > 0, there exists N1 such that for any n ≥ N1, n · Eθ∼F [θ ·Qn(θ)] ≥
θ̄ − ϵ.

Therefore, there exists N1 such that for any n ≥ N1, we have

n · Vα(Qα,n) ≥ n · αEθ∼F [θ ·Qn(θ)] + n · (1− α)Eθ∼F [Un(θ)]

≥ α(θ̄ − ϵ) + 1− α.

Finally, for any ϵ > 0, letting N = max {N0, N1}, we can combine the inequalities above
to obtain

Vα(Qα,n)

Vα(QE,n)
≥ (θ̄ − ϵ) · α+ 1− α

θ̄ · α+ (1− α)(1− 1
e + ϵ)

for any n ≥ N .
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Proof of Lemma 7. Let n be a sufficiently large number so that QE,n is convex, and let θ†n be
the cutoff type such that in the incentive-compatible implementation of efficient allocation,
agents with any type θ > θ†n exert costly effort, i.e., Q′

E,n(θ
†
n) = η. In other words, (n− 1) ·

Fn−2(θ†n) · f(θ†n) = η. Rearranging the terms, we have

Fn−2(θ†n) =
η

(n− 1) · f(θ†n)
.

Note that by Assumption 6, the right-hand side is bounded below by η
(n−1)·β̄1

. Therefore,
for any ϵ0 > 0, there exists N0 such that for any n ≥ N0, we have

F (θ†n) ≥
(

η

(n− 1) · β̄1

) 1
n−2

≥ 1− ϵ0.

Since the density is bounded below by β
1
, we have that θ†n ≥ θ̄− ϵ0

β
1

. For any ϵ1 > 0, let N1

be an integer such that η

(n−1)·f(θ†n)
≤ ϵ1 for any n ≥ N1. The expected utility of an agent

with type θ̄ is

UE,n(θ̄) = Fn−1(θ†n) + η(θ̄ − θ†n) ≤ Fn−2(θ†n) +
η · ϵ0
β
1

≤ ϵ1 +
η · ϵ0
β
1

.

Let θ‡n be the type such that F (θ‡n) = 1− 1
n . There exists N2 such that θ‡n ≥ θ†n for any

n ≥ N2. For any ϵ > 0, let ϵ1 = ϵ
2 , ϵ0 =

ϵβ
1

2η , and N = max{N0, N1, N2}. For any n ≥ N ,
the expected effort of any agent is at least his effort from types above θ‡n, which is bounded
below by

(1− F (θ‡n)) · (QE,n(θ
‡
n)− UE,n(θ̄)) ≥

1

n

(
1

e
− ϵ1 +

η · ϵ0
β
1

)
=

1

n

(
1

e
− ϵ

)
.

Since the item is always allocated in equilibrium, the total utility is

n · Eθ∼F [UE,n(θ)] ≤ 1− 1

e
+ ϵ.

Proof of Lemma 8. Note that compared to the efficient allocation QE,n, the chosen alloca-
tion rule Qn only randomizes the allocation for types between θ̂n and θ̄. Therefore, we
have

n · Eθ∼F [θ ·Qn(θ)] ≥ n · Eθ∼F [θ ·QE,n(θ)]− (θ̄ − θ̂n).

As in the proof of Theorem 3, we can show that limn→∞ θ̂n = θ̄. By taking the limit of the
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above inequality, we have that

lim
n→∞

n · Eθ∼F [θ ·Qn(θ)] ≥ lim
n→∞

n · Eθ∼F [θ ·QE,n(θ)] = θ̄.

Thus, for any ϵ > 0, there exists N1 such that for any n ≥ N1, n·Eθ∼F [θ ·Qn(θ)] ≥ θ̄−ϵ.

A.4 Proof of Large Scale Economy

It is tempting to conjecture that when z is large enough, QE,z(θ) has an S shape (i.e., it
is convex for small θ and concave for large θ), which would naturally imply the order of
the intervals as stated in our result. However, this is not true in general.24 To circumvent
this inconvenience, note that for any small constant ϵ0, when z is large enough, the interim
efficient allocation has small slope (smaller than the marginal cost of effort η) outside the
small interval (θc − ϵ0, θc + ϵ0) centered at θc. Moreover, since the value of the efficient
allocation changes a lot in this small interval, the agents will exert high effort in equilibrium
if the items are allocated efficiently, leading to low expected utility for types around θc.
We show that in the optimal contest, the principal randomizes the allocation around θc.
In particular, the no-effort region, where the allocation is randomized, will cover the whole
interval (θc − ϵ0, θc + ϵ0). Since the derivative of the efficient allocation outside this region
is at most η, the principal’s objective value is maximized by the efficient allocation. We
provide the formal proof below.

Proof of Theorem 5. Since the distribution is continuous, the probability there is a tie for
any two distinct types is 0. Therefore, given the scale parameter z, the interim efficient
allocation is

QE,z(θ) = Pr
[
θ(nz−kz:nz−1) ≤ θ

]
=

zk−1∑
j=0

(
zn− 1

j

)
· (1− F (θ))j · (F (θ))zn−1−j ,

where θ(nz−kz:nz−1) is the (nz−kz)th order statistic, i.e., the (nz−kz)th smallest value in a
sample of nz − 1 observations, and the binomial coefficient

(
n
k

)
is defined by

(
n
k

)
= n!

k!(n−k)! .

24The second-order derivative of the allocation is

Q′′
E,z(θ) = (zn− 1) ·

(
zn− 2

zk − 1

)
(1− F (θ))zk−2 · (F (θ))z(n−k)−2·(

f2(θ)(z(n− k)− 1− (zn− 2)F (θ)) + f ′(θ)(1− F (θ))F (θ)
)
.

No matter how large the parameter z is, for types within (θc−ϵ0, θc+ϵ0), the sign of the second-order
derivative may change multiple times.
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Recall that θc is the cutoff type such that 1−F (θc) =
k
n . The derivative of the allocation

is

Q′
E,z(θ) = f(θ) · (zn− 1) ·

(
zn− 2

zk − 1

)
(1− F (θ))zk−1 · (F (θ))z(n−k)−1.

Note that
(
zn−2
zk−1

)
(1−F (θ))zk−1 · (F (θ))z(n−k)−1 is the probability that the binomial random

variable B(zn − 2, 1 − F (θ)) equals zk − 1. When 1 − F (θ) < k
n , this probability becomes

exponentially small as zn increases, which implies that limz→∞Q′
E,z(θ) = 0. Therefore, for

any ϵ0 > 0, there exists Z0 such that for any z ≥ Z0, for any type θ ̸∈ [θc − ϵ0, θc + ϵ0],

Q′
E,z(θ) ≤ η.

Again by Hoeffding’s inequality, for any ϵ1 > 0, there exists Z1 such that for any z ≥ Z1,

QE,z(θ) ≤ ϵ1

for any type θ ≤ θc − ϵ0 and

QE,z(θ) ≥ 1− ϵ1

for any type θ ≥ θc + ϵ0. Intuitively, this is because limz→∞QE,z(θ) is a step function, i.e.,

lim
z→∞

QE,z(θ) =

0 if θ < θc,

1 if θ ≥ θc.

Let θ̃(1) ≜ θc − ϵ0 −
√

8ϵ0β̄1

ηβ
1

.

Lemma 9. For sufficiently large z, in the optimal contest (Qα,z, Uα,z), we have Uα,z(θ̃
(1)) >

QE,z(θ̃
(1)).

We defer the proof of the lemma to the end of this section. Note that in the optimal
contest (Qα,z, Uα,z), Uα,z(θ̃

(1)) > QE,z(θ̃
(1)) implies that type θ̃(1) must belong to a no-effort

interval. Let θ(1) < θ̃(1) < θ(2) be the endpoints of this no-effort interval. Let Θ+ be
the set of types in (θ(1), θ(2)) such that QE,z(θ) > Q̂α,z(θ), and let Θ− be the set of types
in (θ(1), θ(2)) such that QE,z(θ) < Qα,z(θ). Since the integration constraint binds within
(θ(1), θ(2)), we have that∫

Θ+

(QE,z(θ)−Qα,z(θ)) dF (θ) +

∫
Θ−

(QE,z(θ)−Qα,z(θ)) dF (θ) = 0.
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Note that ∫
Θ−

(QE,z(θ)−Qα,z(θ)) dF (θ) ≤ −
∫ θc−ϵ0

θ(1)
(η(θ − θ(1))− ϵ1) dF (θ)

≤ −β
1
·
(η
2
· (θc − ϵ0 − θ(1))2 − ϵ1 · (θc − ϵ0 − θ(1))

)
.

Similarly,

∫
Θ+

(QE,z(θ)−Qα,z(θ)) dF (θ) ≤
∫ θ(2)

θc−ϵ0

1 dF (θ) ≤ β̄1 · (θ(2) − θc + ϵ0).

Combining the inequalities above, for sufficiently small ϵ1 ≤ η
4 (θc − ϵ0 − θ(1)), we must have

θ(2) ≥ θc − ϵ0 +
η · β

1

4β̄1
· (θc − ϵ0 − θ(1))2 ≥ θc + ϵ0.

We obtain the last inequality simply by substituting the bound for θ(1). This implies that in
the optimal contest, the no-effort region (θ(1), θ(2)) covers the whole interval (θc−ϵ0, θc+ϵ0).
Note that since the derivative of the efficient allocation outside the no-effort region (θ(1), θ(2))

is at most η, the principal’s objective is maximized by the efficient allocation. In particular,
let θ(3) ≥ θ(2) be the type such that the linear extension of the utility function within the
no-tension region intersects the efficient allocation rule. Then the interval (θ(2), θ(3)) is the
efficient region, and the union of (θ, θ(1)) and (θ(3), θ̄) is the no-tension region.

Proof of Lemma 9. It is sufficient to show that any contest (Q̃α,z, Ũα,z) such that Ũα,z(θ̃
(1)) ≤

QE,z(θ̃
(1)) cannot be an optimal contest. We prove this by contradiction: given such a con-

test, we construct a contest Q̂α,z, Ûα,z that yields a higher objective value.
Let ϵ0, ϵ1, ϵ2 > 0 be any numbers such that the following hold:25

0 < ϵ0 ≤ min

{
β
1

10η · β̄1
, ϵ42

}
, ϵ0 + 2

√
8ϵ0β̄1
ηβ

1

≤ ϵ2,

0 < ϵ1 ≤ min{0.01, ϵ42}, 0 < ϵ2 <
β
1

10η · β̄1
,

αβ̄1 ·

(
(ϵ2 + ϵ0)

2 · β̄1
β
1

+ ϵ0 + ϵ2

)2

<
1

2η
(1− α) ·

(
η

(
ϵ2 − ϵ0 −

√
8ϵ0β̄1
ηβ

1

)
− ϵ1

)
.

Let θ̂(1) ≜ θc − ϵ2. By our choice of ϵ0, we have θ̂(1) < θ̃(1).

25Notice that these inequalities can hold at the same time: if one chooses ϵ0 and ϵ1 that are “small”
compared to ϵ2, for example, ϵ0 = o(ϵ42) and ϵ1 = o(ϵ42), then the last inequality holds because the
left-hand side is of higher order than the right-hand side.
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Consider a contest (Q̂α,z, Ûα,z) characterized by three cutoffs θ̂(1) < θ̂(2) ≤ θ̂(3) such that
the union of (θ, θ̂(1)) and (θ̂(3), θ̄) is the no-tension region, (θ̂(1), θ̂(2)) is the no-effort region,
and (θ̂(2), θ̂(3)) is the efficient region.
Step 1: In this step, we will show that if θ̂(1) is chosen so that θc −

β
1

10η·β̄1
≤ θ̂(1),26 then

the integration constraint for the no-effort interval imposes an upper bound on the length
of the no-effort interval, i.e., θ̂(2) ≤ θ̃, where θ̃ ≜ θc + ϵ0 +

2η·β̄1

β
1

· (θc + ϵ0 − θ̂(1))2.

Let Θ̂+ be the set of types in (θ̂(1), θ̂(2)) such that QE,z(θ) > Q̂α,z(θ), and let Θ̂− be
the set of types in (θ̂(1), θ̂(2)) such that QE,z(θ) < Q̂α,z(θ). Since the integration constraint
binds within (θ̂(1), θ̂(2)), we have that

0 =

∫
Θ̂+

(QE,z(θ)− Q̂α,z(θ)) dF (θ) +

∫
Θ̂−

(QE,z(θ)− Q̂α,z(θ)) dF (θ)

≥
∫ θ̂(2)

θc+ϵ0

(1− 2ϵ1 − η(θ − θ̂(1))) dF (θ)−
∫ θc+ϵ0

θ̂(1)
η(θ − θ̂(1)) dF (θ).

By our choice of θ̂(1) and ϵ0, ϵ1, we have 1 − 2ϵ1 − η(θ − θ̂(1)) ≥ 1
2 for any type θ ≤ θ̃.

Therefore,

∫ θ̃

θc+ϵ0

(1− 2ϵ1 − η(θ − θ̂(1))) dF (θ)−
∫ θc+ϵ0

θ̂(1)
η(θ − θ̂(1)) dF (θ)

≥
β
1

2
(θ̃ − θc − ϵ0)− η · β̄1(θc + ϵ0 − θ̂(1))2 ≥ 0.

Combining the above two inequalities, we get the desired bound on θ̂(2).
Step 2: Next we utilize the upper bound to show that the objective value from the contest
Q̂α,z, Ûα,z is higher than that from the contest Q̃α,z, Ũα,z with Ũα,z(θ̃

(1)) ≤ Q̃α,z(θ̃
(1)). Note

that QE,z and Q̂α,z(θ) coincide at any type θ outside the no-effort region. Therefore, the
loss in efficiency compared to the efficient allocation rule is

α ·
∫ θ̂(2)

θ̂(1)
θ ·QE,z dF (θ)− α ·

∫ θ̂(2)

θ̂(1)
θ · Q̂α,z(θ) dF (θ)

=α ·
∫
Θ̂+

θ · (QE,z(θ)− Q̂α,z(θ)) dF (θ)− α ·
∫
Θ̂−

θ · (QE,z(θ)− Q̂α,z(θ)) dF (θ)

≤α · (θ̂(2) − θ̂(1)) ·
∫
Θ̂+

(QE,z(θ)− Q̂α,z(θ)) dF (θ)

≤α · (θ̂(2) − θ̂(1)) · (F (θ̂(2))− F (θ̂(1))) ≤ αβ̄1 · (θ̂(2) − θ̂(1))2,

26Such a choice is possible because by the choice of ϵ0, ϵ1, ϵ2, we have θc −
β
1

10η·β̄1
≤ θ̃(1).
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where the second inequality holds because the interim allocations are bounded within [0, 1],
and the last inequality holds by the continuity assumption (Assumption 6).

Moreover, note that the utility Ũα,z increases at a rate of at most η after type θ̃(1), while
the utility Ûα,z increases at a rate of η within the interval (θ̃(1), θ̂(3)). Therefore, the gain in
utility is at least

(1− α) ·
∫ θ̂(3)

θ̃(1)
Ûα,z(θ) dF (θ)− (1− α) ·

∫ θ̂(3)

θ̃(1)
Ũα,z(θ) dF (θ)

≥ (1− α) · (F (θ̂(3))− F (θ̃(1))) · (Ûα,z(θ̃
(1))− Ũα,z(θ̃

(1)))

≥ (1− α) · (F (θ̂(3))− F (θ̃(1))) · (η · (θ̃(1) − θ̂(1))− ϵ1)

≥ 1

2η
(1− α) · β

1
· (η · (θ̃(1) − θ̂(1))− ϵ1).

Since the matching efficiency in the contest (Q̃α,z, Ũα,z) is bounded above by the efficient
allocation rule, combining the inequalities, we have that

Objα(Q̃α,z, Ũα,z)− Objα(Q̂α,z, Ûα,z)

≤ αβ̄1 · (θ̂(2) − θ̂(1))2 − 1

2η
(1− α) · β

1
· (η · (θ̃(1) − θ̂(1))− ϵ1)

≤ αβ̄1 ·

(
(ϵ2 + ϵ0)

2 · β̄1
β
1

+ ϵ0 + ϵ2

)2

− 1

2η
(1− α) ·

(
η

(
ϵ2 − ϵ0 −

√
8ϵ0β̄1
ηβ

1

)
− ϵ1

)
< 0.

The last inequality comes from the choice of ϵ0, ϵ1, ϵ2. Therefore, the contest (Q̃α,z, Ũα,z) is
not optimal.

B Optimality of Monotone Allocations

Note that there exist direct mechanisms that implement non-monotone interim allocations
(see Example 3). This is because the agent’s utility does not satisfy the single-crossing prop-
erty in when the mechanism provides randomized signal recommendation. In this section,
we show that under an additional assumption, which we call “no concave crossing,” non-
monotone interim allocation rules are not optimal for the objective of maximizing weighted
average between welfare and agents utilities.

Assumption 7 (no-concave-crossing). For any agent i, consider any allocation and deter-
ministic signal recommendation (xi, si), and any allocation and stochastic signal recommen-
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dation (x′i, Di), if there exist two types θ̂i < θ̂′i such that

ui(xi, si, θ̂i) ≤ Es∼Di

[
ui(x

′
i, s, θ̂i)

]
ui(xi, si, θ̂

′
i) ≤ Es∼Di

[
ui(x

′
i, s, θ̂

′
i)
]
,

then for any θi ∈ [θ̂i, θ̂
′
i], we have the following ui(xi, si, θi) ≤ Es∼Di [ui(x

′
i, s, θi)].

Note that the above condition only requires no-concave-crossing between the utility
curve generated by a deterministic recommendation and the one generated by a general
randomized recommendation. The condition usually fails if we consider two randomized
recommendations. It is always satisfied if the cost function is linear or quadratic.

For any non-monotone allocation, we can consider its monotone rearrangement which
swaps the allocation among types such that the resulting allocation is monotone. The
following assumption assumes that such rearrangement always benefits the principal. This
assumption implies that the principal benefits from allocating the resource to higher types
than lower types.

Assumption 8 (assortative matching). For any interim allocation Q and Q† that is a
monotone rearrangement of Q, we have∑

i∈[n]

Eθi∼Fi
[Wi(Qi(θi), θi)] ≤

∑
i∈[n]

Eθi∼Fi

[
Wi(Q

†
i (θi), θi)

]
.

Finally, to simplify the exposition, we assume that the type distribution has finite sup-
port.

Assumption 9. The type space of agent i is discrete and finite; that is, it has the form
Θi = {θ̂(0)i , . . . , θ̂

(m)
i }, with θ̂

(0)
i < · · · < θ̂

(m)
i .

Theorem 6. Under Assumptions 7, 8 and 9, for any interim allocation–utility pair (Q,U)

that is implementable by a direct mechanism, there exists (Q†,U †) with monotone Q† that is
implementable by a non-coordination mechanism and yields a weakly higher objective value.

Proof. Let Q† be a monotonic rearrangement of Q that is feasible and weakly improves
matching efficiency. We will construct a U † such that (Q†,U †) is implementable by a non-
coordination mechanism and show that U †

i (θ̂
(k)
i ) ≥ Ui(θ̂

(k)
i ) for all i and all k ∈ {0, . . . ,m},

i.e., (Q†,U †) weakly improves all agents’ utilities for all types compared to the mechanism
(Q,U).

We prove the above claim by induction.
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k = 0: Let U †
i (θ̂

(0)
i ) = Q†

i (θ̂
(0)
i ). Since Q† is a monotone rearrangement of Q, and

θ̂
(0)
i is the lowest type, we have Qi(θ̂

(0)
i ) ≤ Q†

i (θ̂
(0)
i ). By incentive compatibility, we have

Qi(θ̂
(0)
i ) ≥ Ui(θ̂

(0)
i ). Hence we have U †

i (θ̂
(0)
i ) ≥ Ui(θ̂

(0)
i ).

For any k ≥ 1:
Case 1: suppose Q†

i (θ̂
(k)
i ) ≥ Qi(θ̂

(k)
i ). We can apply the same argument as in Theorem 1

to construct U †
i (θ̂

(k)
i ) so that the expected cost of any agent i with type θ̂

(k)
i is weakly lower

than the expected cost under (Q,U), the direct mechanism we start with, i.e., U †
i (θ̂

(k)
i ) ≥

Ui(θ̂
(k)
i ).
Case 2: suppose Q†

i (θ̂
(k)
i ) < Qi(θ̂

(k)
i ).

Let s
(k)
i be the signal that type θ̂

(k−1)
i is indifferent between truthfully reporting in the

newly constructed mechanism and misreporting as the adjacent higher type θ̂(k)i in the newly
constructed mechanism, so as to receive(Q†

i (θ̂
(k)
i ), s

(k)
i ), i.e.,

U †
i (θ̂

(k−1)
i ) = ui(θ̂

(k−1)
i ;Q†

i (θ̂
(k)
i ), s

(k)
i ).

Let U †
i (θ̂

(k)
i ) = ui(θ̂

(k)
i ;Q†

i (θ̂
(k)
i ), s

(k)
i ). It remains to show that U †

i (θ̂
(k)
i ) ≥ Ui(θ̂

(k)
i ).

Since Q† is a monotone rearrangement of Q, for any i and any type θ̂
(k)
i , there must

exist k′ > k such that Qi(θ̂
(k′)
i ) ≤ Q†

i (θ̂
(k)
i ). Similarly, let s̃i be the signal that type θ̂

(k−1)
i is

indifferent between truthfully reporting in the newly constructed mechanism and misreport-
ing as the higher type θ̂

(k′)
i in the original direct mechanism, so as to receive (Qi(θ̂

(k′)
i ), s̃i),

i.e.,

U †
i (θ̂

(k−1)
i ) = ui(θ̂

(k−1)
i ;Qi(θ̂

(k′)
i ), s̃i). (3)

Note that Q†
i (θ̂

(k)
i ) ≥ Qi(θ̂

(k′)
i ) implies s

(k)
i ≥ s̃i. Notice that by construction, s(k

′)
i is the

signal recommended to type θ̂
(k′)
i under non-coordination mechanism and by single-crossing

in utility, we can show that s
(k′)
i ≥ s

(k)
i . Hence we have s

(k′)
i ≥ s̃i.

Let D
(k)
i be the distribution over signal recommendations to type θ̂

(k)
i under the orig-

inal mechanism that gives agent i interim utility Ui. We first establish the following two
inequalities that describe the preference of type θ̂

(k′)
i and type θ̂

(k−1)
i .

• type θ̂(k
′)

i is weakly better off by receiving the deterministic recommendation (Qi(θ̂
(k′)
i ), s̃i)

than misreporting as type θ̂(k)i so as to receive (Qi(θ̂
(k)
i ), D

(k)
i ), the potentially stochas-

tic allocation and signal recommendation to type θ̂(k)i in the original direct mechanism,
i.e.,

ui(θ̂
(k′)
i ;Qi(θ̂

(k′)
i ), s̃i) ≥ ui(θ̂

(k′)
i ;Qi(θ̂

(k)
i ), D

(k)
i ).

This is because
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Ui(θ̂
(k′)
i ) ≥ ui(θ̂

(k′)
i ;Qi(θ̂

(k)
i ), D

(k)
i ), (4)

which is implied by incentive compatibility in the original direct mechanism; and

ui(θ̂
(k′)
i ;Qi(θ̂

(k′)
i ), s̃i) ≥ Ui(θ̂

(k′)
i ), (5)

which is true because (1) by the inductive argument U †
i (θ̂

(k−1)
i ) ≥ Ui(θ̂

(k−1)
i ), and

the definition of s̃i (Equation 3), s̃i ≤ Σ(D
(k′)
i , θ̂

(k)
i ) is smaller than, the certainty

equivalent signal for type θ̂
(k)
i given the distribution D

(k′)
i ; and (2) Σ(D

(k′)
i , θ̂

(k)
i ) ≤

Σ(D
(k′)
i , θ̂

(k′)
i ).

• type θ̂(k−1)
i is weakly better off by receiving the deterministic recommendation (Qi(θ̂

(k′)
i ), s̃i)

than misreporting as type θ̂(k)i so as to receive (Qi(θ̂
(k)
i ), D

(k)
i ), the potentially stochas-

tic allocation and signal recommendation to type θ̂(k)i in the original direct mechanism,
i.e.,

ui(θ̂
(k−1)
i ;Qi(θ̂

(k′)
i ), s̃i) ≥ ui(θ̂

(k−1)
i ;Qi(θ̂

(k)
i ), D

(k)
i ).

This is because

ui(θ̂
(k−1)
i ;Qi(θ̂

(k′)
i ), s̃i) = U †

i (θ̂
(k−1)
i ) ≥ Ui(θ̂

(k−1)
i ) ≥ ui(θ̂

(k−1)
i ;Qi(θ̂

(k)
i ), D

(k)
i ).

The first inequality holds by the induction assumption. The second inequality holds
because ui(θ̂

(k−1)
i ;Qi(θ̂

(k)
i ), D

(k)
i ) is the utility that type θ̂

(k−1)
i obtains by deviating

to report type θ̂
(k)
i and always following the signal recommendation.

Combining the two inequalities, since θ̂
(k−1)
i < θ̂

(k)
i < θ̂

(k′)
i , we immediately obtain from

Assumption 7 that

ui(θ̂
(k)
i ;Qi(θ̂

(k′)
i ), s̃i) ≥ ui(θ̂

(k)
i ;Qi(θ̂

(k)
i ), D

(k)
i ). (6)

Moreover, since Q†
i (θ̂

(k)
i ) ≥ Qi(θ̂

(k′)
i ), s(k)i ≥ s̃i, and the utilities of the agent given these

two options coincide at type θ̂
(k−1)
i , by single-crossing property, we have that for type θ̂

(k)
i ,

ui(θ̂
(k)
i ;Q†

i (θ̂
(k)
i ), s

(k)
i ) ≥ ui(θ̂

(k)
i ;Qi(θ̂

(k′)
i ), s̃i). (7)

By construction, we have

U †
i (θ̂

(k)
i ) = ui(θ̂

(k)
i ;Q†

i (θ̂
(k)
i ), s

(k)
i ),
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and by definition, we have

Ui(θ̂
(k)
i ) = ui(θ̂

(k)
i ;Qi(θ̂

(k)
i ), D

(k)
i ).

Combining them with equation 6 and 7, we have

U †
i (θ̂

(k)
i ) ≥ Ui(θ̂

(k)
i ).
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