Welfare Theorems

Yingkai Li

EC5881 Semester 1, AY2024/25

Different efficiency measures: utilitarian efficiency, Rawlsian efficiency, Pareto efficiency.

Different efficiency measures: utilitarian efficiency, Rawlsian efficiency, Pareto efficiency.

Feasible allocations: In an economy with ℓ commodities with total endowment $\bar{\omega}$, an allocation $\{y^a\}_{a\in A}$ with $y^a \in \mathbb{R}^{\ell}_+$ is *feasible* if $\sum_{a\in A} y^a = \bar{\omega}$.

Different efficiency measures: utilitarian efficiency, Rawlsian efficiency, Pareto efficiency.

Feasible allocations: In an economy with ℓ commodities with total endowment $\bar{\omega}$, an allocation $\{y^a\}_{a\in A}$ with $y^a \in \mathbb{R}^{\ell}_+$ is *feasible* if $\sum_{a\in A} y^a = \bar{\omega}$.

Definition

An allocation $\{z^a\}_{a \in A}$ is a Pareto improvement of another allocation $\{y^a\}_{a \in A}$ if $U^a(z^a) \ge U^a(y^a)$ for all $a \in A$ and the inequality is strict for at least one agent.

Different efficiency measures: utilitarian efficiency, Rawlsian efficiency, Pareto efficiency.

Feasible allocations: In an economy with ℓ commodities with total endowment $\bar{\omega}$, an allocation $\{y^a\}_{a \in A}$ with $y^a \in \mathbb{R}^{\ell}_+$ is *feasible* if $\sum_{a \in A} y^a = \bar{\omega}$.

Definition

An allocation $\{z^a\}_{a\in A}$ is a Pareto improvement of another allocation $\{y^a\}_{a\in A}$ if $U^a(z^a) \ge U^a(y^a)$ for all $a \in A$ and the inequality is strict for at least one agent. Moreover, an allocation $\{y^a\}_{a\in A}$ is Pareto optimal if it cannot be Pareto-improved by another feasible allocation.

Illustration in Edgeworth box.

Definition

An allocation $\{x^a\}_{a \in A}$ is a Walrasian allocation if there exists $p \in \mathbb{R}_+ +^{\ell}$ such that Z(p) = 0and $x^a = \hat{x}(p)$.

Definition

An allocation $\{x^a\}_{a \in A}$ is a Walrasian allocation if there exists $p \in \mathbb{R}_+ +^{\ell}$ such that Z(p) = 0and $x^a = \hat{x}(p)$.

Theorem

Suppose U^a is monotone for all agent $a \in A$. Then every Walrasian allocation is Pareto optimal.

Intepretation: equilibrium allocation is always efficient.

Definition

An allocation $\{x^a\}_{a \in A}$ is a Walrasian allocation if there exists $p \in \mathbb{R}_+ +^{\ell}$ such that Z(p) = 0and $x^a = \hat{x}(p)$.

Theorem

Suppose U^a is monotone for all agent $a \in A$. Then every Walrasian allocation is Pareto optimal.

Intepretation: equilibrium allocation is always efficient.

Remark: we do not assume quasi-concave or continuous utility here.

Proof by contradiction: Let $\{x^a\}_{a \in A}$ be any Walrasian allocation and let p be the market clearing price.

Proof by contradiction: Let $\{x^a\}_{a \in A}$ be any Walrasian allocation and let p be the market clearing price.

Suppose that there exists an allocation $\{z^a\}_{a \in A}$ that is a Pareto improvement of $\{\hat{x}^a\}_{a \in A}$:

$$U^a(z^a) \ge U^a(\hat{x}^a(p^*)), \quad \forall a \in A,$$

and $\exists \tilde{a}$ such that it holds with a strict inequality.

Proof by contradiction: Let $\{x^a\}_{a \in A}$ be any Walrasian allocation and let p be the market clearing price.

Suppose that there exists an allocation $\{z^a\}_{a \in A}$ that is a Pareto improvement of $\{\hat{x}^a\}_{a \in A}$:

$$U^a(z^a) \ge U^a(\hat{x}^a(p^*)), \quad \forall a \in A,$$

and $\exists \tilde{a}$ such that it holds with a strict inequality.

Lemma
•
$$p \cdot z^a \ge p \cdot \omega^a$$
 for all agents a .
• $p \cdot z^{\tilde{a}} > p \cdot \omega^{\tilde{a}}$.

Proof by contradiction: Let $\{x^a\}_{a \in A}$ be any Walrasian allocation and let p be the market clearing price.

Suppose that there exists an allocation $\{z^a\}_{a \in A}$ that is a Pareto improvement of $\{\hat{x}^a\}_{a \in A}$:

$$U^a(z^a) \ge U^a(\hat{x}^a(p^*)), \quad \forall a \in A,$$

and $\exists \tilde{a}$ such that it holds with a strict inequality.

Lemma
1
$$p \cdot z^a \ge p \cdot \omega^a$$
 for all agents a .
2 $p \cdot z^{\tilde{a}} > p \cdot \omega^{\tilde{a}}$.

Combining the inequalities, we have that

$$p \cdot \left[\sum_{a \in A} z^a\right] > p^* \cdot \left[\sum_{a \in A} \omega^a\right],$$

which implies that $\sum_{a \in A} z^a \neq \sum_{a \in A} \omega^a = \bar{\omega}$, violating the feasibility condition.

Proof of (1) $p \cdot z^a \ge p \cdot \omega^a$ for all agents a.

Proof of (1) $p \cdot z^a \ge p \cdot \omega^a$ for all agents a. Suppose by contradiction that $\exists a, p \cdot z^a .$

Proof of (1) $p \cdot z^a \ge p \cdot \omega^a$ for all agents a. Suppose by contradiction that $\exists a, p \cdot z^a .$ $<math>\Rightarrow \exists \epsilon > 0$ such that

$$p \cdot (z^a + (\epsilon, \epsilon, ..., \epsilon))$$

Proof of (1) $p \cdot z^a \ge p \cdot \omega^a$ for all agents a. Suppose by contradiction that $\exists a, p \cdot z^a .$ $<math>\Rightarrow \exists \epsilon > 0$ such that

$$p \cdot (z^a + (\epsilon, \epsilon, ..., \epsilon))$$

 $\Rightarrow z^a + (\epsilon, \epsilon, ..., \epsilon)$ is budget feasible for agent a.

Proof of (1) $p \cdot z^a \ge p \cdot \omega^a$ for all agents a. Suppose by contradiction that $\exists a, p \cdot z^a .$ $<math>\Rightarrow \exists \epsilon > 0$ such that

$$p \cdot (z^a + (\epsilon, \epsilon, ..., \epsilon))$$

 $\Rightarrow z^a + (\epsilon, \epsilon, ..., \epsilon) \text{ is budget feasible for agent } a. \\\Rightarrow \text{ by monotonicity of } U^a\text{,}$

$$U^{a}(z^{a} + (\epsilon, \epsilon, ..., \epsilon)) > U^{a}(z^{a}) \ge U^{a}(x^{a}).$$

Proof of (1) $p \cdot z^a \ge p \cdot \omega^a$ for all agents a. Suppose by contradiction that $\exists a, p \cdot z^a .$ $<math>\Rightarrow \exists \epsilon > 0$ such that

$$p \cdot (z^a + (\epsilon, \epsilon, ..., \epsilon))$$

 $\Rightarrow z^a + (\epsilon, \epsilon, ..., \epsilon) \text{ is budget feasible for agent } a.$ $\Rightarrow \text{ by monotonicity of } U^a,$

$$U^{a}(z^{a} + (\epsilon, \epsilon, ..., \epsilon)) > U^{a}(z^{a}) \ge U^{a}(x^{a}).$$

Contradiction to the optimality of allocation x^a given price p.

Proof of (1) $p \cdot z^a \ge p \cdot \omega^a$ for all agents a. Suppose by contradiction that $\exists a, p \cdot z^a .$ $<math>\Rightarrow \exists \epsilon > 0$ such that

$$p \cdot (z^a + (\epsilon, \epsilon, ..., \epsilon))$$

 $\Rightarrow z^a + (\epsilon, \epsilon, ..., \epsilon) \text{ is budget feasible for agent } a.$ $\Rightarrow \text{ by monotonicity of } U^a,$

$$U^a(z^a + (\epsilon, \epsilon, ..., \epsilon)) > U^a(z^a) \ge U^a(x^a).$$

Contradiction to the optimality of allocation x^a given price p.

Proof of (2) $p \cdot z^{\tilde{a}} > p \cdot \omega^{\tilde{a}}$.

Proof of (1) $p \cdot z^a \ge p \cdot \omega^a$ for all agents a. Suppose by contradiction that $\exists a, p \cdot z^a .$ $<math>\Rightarrow \exists \epsilon > 0$ such that

$$p \cdot (z^a + (\epsilon, \epsilon, ..., \epsilon))$$

 $\Rightarrow z^a + (\epsilon, \epsilon, ..., \epsilon) \text{ is budget feasible for agent } a.$ $\Rightarrow \text{ by monotonicity of } U^a,$

$$U^a(z^a + (\epsilon, \epsilon, ..., \epsilon)) > U^a(z^a) \ge U^a(x^a).$$

Contradiction to the optimality of allocation x^a given price p.

Proof of (2) $p \cdot z^{\tilde{a}} > p \cdot \omega^{\tilde{a}}$. (i) $U^{\tilde{a}}(z^{\tilde{a}}) > U^{\tilde{a}}(x^{\tilde{a}})$.

Proof of (1) $p \cdot z^a \ge p \cdot \omega^a$ for all agents a. Suppose by contradiction that $\exists a, p \cdot z^a .$ $<math>\Rightarrow \exists \epsilon > 0$ such that

$$p \cdot (z^a + (\epsilon, \epsilon, ..., \epsilon))$$

 $\Rightarrow z^a + (\epsilon, \epsilon, ..., \epsilon) \text{ is budget feasible for agent } a.$ $\Rightarrow \text{ by monotonicity of } U^a,$

$$U^{a}(z^{a} + (\epsilon, \epsilon, ..., \epsilon)) > U^{a}(z^{a}) \ge U^{a}(x^{a}).$$

Contradiction to the optimality of allocation x^a given price p.

 $\begin{array}{l} \mbox{Proof of (2) } p \cdot z^{\tilde{a}} > p \cdot \omega^{\tilde{a}}. \\ \mbox{(i) } U^{\tilde{a}}(z^{\tilde{a}}) > U^{\tilde{a}}(x^{\tilde{a}}). \\ \mbox{(ii) } x^{\tilde{a}} \mbox{ maximizes agent } \tilde{a}' \mbox{s utility in budget set } B(p, p \cdot \omega^{\tilde{a}}). \end{array}$

Proof of (1) $p \cdot z^a \ge p \cdot \omega^a$ for all agents a. Suppose by contradiction that $\exists a, p \cdot z^a .$ $<math>\Rightarrow \exists \epsilon > 0$ such that

$$p \cdot (z^a + (\epsilon, \epsilon, ..., \epsilon))$$

 $\Rightarrow z^a + (\epsilon, \epsilon, ..., \epsilon) \text{ is budget feasible for agent } a.$ $\Rightarrow \text{ by monotonicity of } U^a,$

$$U^{a}(z^{a} + (\epsilon, \epsilon, ..., \epsilon)) > U^{a}(z^{a}) \ge U^{a}(x^{a}).$$

Contradiction to the optimality of allocation x^a given price p.

 $\begin{array}{l} \mbox{Proof of (2) } p \cdot z^{\tilde{a}} > p \cdot \omega^{\tilde{a}}. \\ (i) \ U^{\tilde{a}}(z^{\tilde{a}}) > U^{\tilde{a}}(x^{\tilde{a}}). \\ (ii) \ x^{\tilde{a}} \ \mbox{maximizes agent } \tilde{a}\text{'s utility in budget set } B(p,p \cdot \omega^{\tilde{a}}). \\ (i) \ \mbox{and (ii)} \Rightarrow \ \mbox{bundle } z^{\tilde{a}} \ \mbox{is not budget feasible for agent } \tilde{a}, \ \mbox{i.e.,} \end{array}$

$$p \cdot z^{\tilde{a}} > p \cdot \omega^{\tilde{a}}.$$

Can Pareto optimal allocation implemented as a Walrasian equilibrium given any endowment? No!

Illustration of in Edgeworth box with two commodities.

Endowment of each agent $a \in A$:

- commodities ω^a ;
- monetary transfer t^a .

Endowment of each agent $a \in A$:

- commodities ω^a ;
- monetary transfer t^a .

Given market price p, the budget of agent a is $w^a = p\omega^a + t^a$.

Endowment of each agent $a \in A$:

- commodities ω^a ;
- monetary transfer t^a .

Given market price p, the budget of agent a is $w^a = p\omega^a + t^a$.

Budget balance constraint: $\sum_{a \in A} t^a = 0.$

Endowment of each agent $a \in A$:

- commodities ω^a ;
- monetary transfer t^a .

Given market price p, the budget of agent a is $w^a = p\omega^a + t^a$.

Budget balance constraint: $\sum_{a \in A} t^a = 0.$

Definition

x is a Walrasian allocation with transfers if there exists a price p and an endowment of monetary transfer t^a for each agent a such that sum of excess demand is zero.

Theorem

Suppose that U^a is strongly monotone, strictly quasiconcave, and continuous for all a. Then every Pareto optimal allocation is a Walrasian allocation with transfers.

Quasiconcavity is crucial for the existence of supporting price.

Theorem

Suppose that U^a is strongly monotone, strictly quasiconcave, and continuous for all a. Then every Pareto optimal allocation is a Walrasian allocation with transfers.

Quasiconcavity is crucial for the existence of supporting price.

Motivation for exchange economy with transfers:

• government collects taxes and redistributes them as subsidies to achieve a more efficient allocation in equilibrium.

Let $\{y^a\}_{a \in A}$ be a Pareto optimal allocation.

Consider an exchange economy (without transfers) with endowment $\{y^a\}_{a \in A}$.

Let $\{y^a\}_{a \in A}$ be a Pareto optimal allocation.

Consider an exchange economy (without transfers) with endowment $\{y^a\}_{a \in A}$.

Given properties of U^a , Walrasian equilibrium exists in this economy with price $p^* \gg 0$:

$$\sum_{a \in A} \bar{x}^a(p^*, p^* \cdot y^a) = \sum_{a \in A} y^a = \bar{\omega}.$$

Let $\{y^a\}_{a \in A}$ be a Pareto optimal allocation.

Consider an exchange economy (without transfers) with endowment $\{y^a\}_{a \in A}$.

Given properties of U^a , Walrasian equilibrium exists in this economy with price $p^* \gg 0$:

$$\sum_{a \in A} \bar{x}^a(p^*, p^* \cdot y^a) = \sum_{a \in A} y^a = \bar{\omega}.$$

Equilibrium condition

 $\Rightarrow u^a(\bar{x}^a(p^*,p^*\cdot y^a)) \geq u^a(y^a) \text{ for all } a \text{ since } y^a \text{ is budget feasible.}$

Let $\{y^a\}_{a \in A}$ be a Pareto optimal allocation.

Consider an exchange economy (without transfers) with endowment $\{y^a\}_{a \in A}$.

Given properties of U^a , Walrasian equilibrium exists in this economy with price $p^* \gg 0$:

$$\sum_{a \in A} \bar{x}^a(p^*, p^* \cdot y^a) = \sum_{a \in A} y^a = \bar{\omega}.$$

Equilibrium condition $\Rightarrow u^a(\bar{x}^a(p^*,p^*\cdot y^a)) \ge u^a(y^a) \text{ for all } a \text{ since } y^a \text{ is budget feasible.}$ $\Rightarrow u^a(\bar{x}^a(p^*,p^*\cdot y^a)) = u^a(y^a) \text{ since } \{y^a\}_{a \in A} \text{ is Pareto optimal.}$

Let $\{y^a\}_{a \in A}$ be a Pareto optimal allocation.

Consider an exchange economy (without transfers) with endowment $\{y^a\}_{a \in A}$.

Given properties of U^a , Walrasian equilibrium exists in this economy with price $p^* \gg 0$:

$$\sum_{a \in A} \bar{x}^a(p^*, p^* \cdot y^a) = \sum_{a \in A} y^a = \bar{\omega}.$$

Equilibrium condition

 $\Rightarrow u^a(\bar{x}^a(p^*, p^* \cdot y^a)) \ge u^a(y^a) \text{ for all } a \text{ since } y^a \text{ is budget feasible.}$ $\Rightarrow u^a(\bar{x}^a(p^*, p^* \cdot y^a)) = u^a(y^a) \text{ since } \{y^a\}_{a \in A} \text{ is Pareto optimal.}$ $\Rightarrow u^a = \bar{x}^a(x^*, x^*, y^a) \text{ since demand is unique (because } U^a \text{ is strictly quasized})$

 $\Rightarrow y^a = \bar{x}^a(p^*, p^* \cdot y^a)$ since demand is unique (because U^a is strictly quasiconcave).

Let $\{y^a\}_{a \in A}$ be a Pareto optimal allocation.

Consider an exchange economy (without transfers) with endowment $\{y^a\}_{a \in A}$.

Given properties of U^a , Walrasian equilibrium exists in this economy with price $p^* \gg 0$:

$$\sum_{a \in A} \bar{x}^a (p^*, p^* \cdot y^a) = \sum_{a \in A} y^a = \bar{\omega}.$$

Equilibrium condition $\Rightarrow u^a(\bar{x}^a(p^*,p^*\cdot y^a)) \ge u^a(y^a) \text{ for all } a \text{ since } y^a \text{ is budget feasible.}$ $\Rightarrow u^a(\bar{x}^a(p^*,p^*\cdot y^a)) = u^a(y^a) \text{ since } \{y^a\}_{a\in A} \text{ is Pareto optimal.}$ $\Rightarrow y^a = \bar{x}^a(p^*,p^*\cdot y^a) \text{ since demand is unique (because } U^a \text{ is strictly quasiconcave}).$ Define $t^a = p^* \cdot y^a - p^* \cdot \omega^a$. Then

$$\sum_{a \in A} t^a = p^* \cdot \left(\sum_{a \in A} y^a - \sum_{a \in A} \omega^a \right) = 0.$$