Welfare Theorems

Yingkai Li

EC5881 Semester 1, AY2024/25

Different efficiency measures: utilitarian efficiency, Rawlsian efficiency, Pareto efficiency.

Different efficiency measures: utilitarian efficiency, Rawlsian efficiency, Pareto efficiency.

Feasible allocations: In an economy with ℓ commodities with total endowment $\bar{\omega}$, an allocation $\{y^a\}_{a\in A}$ with $y^a\in \mathbb{R}_+^\ell$ is *feasible* if $\sum_{a\in A}y^a=\bar\omega.$

Different efficiency measures: utilitarian efficiency, Rawlsian efficiency, Pareto efficiency.

Feasible allocations: In an economy with ℓ commodities with total endowment $\bar{\omega}$, an allocation $\{y^a\}_{a\in A}$ with $y^a\in \mathbb{R}_+^\ell$ is *feasible* if $\sum_{a\in A}y^a=\bar\omega.$

Definition

An allocation $\{z^a\}_{a\in A}$ is a Pareto improvement of another allocation $\{y^a\}_{a\in A}$ if $U^a(z^a)\geq U^a(y^a)$ for all $a\in A$ and the inequality is strict for at least one agent.

Different efficiency measures: utilitarian efficiency, Rawlsian efficiency, Pareto efficiency.

Feasible allocations: In an economy with ℓ commodities with total endowment $\bar{\omega}$, an allocation $\{y^a\}_{a\in A}$ with $y^a\in \mathbb{R}_+^\ell$ is *feasible* if $\sum_{a\in A}y^a=\bar\omega.$

Definition

An allocation $\{z^a\}_{a\in A}$ is a Pareto improvement of another allocation $\{y^a\}_{a\in A}$ if $U^a(z^a)\geq U^a(y^a)$ for all $a\in A$ and the inequality is strict for at least one agent. Moreover, an allocation $\{y^a\}_{a \in A}$ is Pareto optimal if it cannot be Pareto-improved by another feasible allocation.

Illustration in Edgeworth box.

Definition

An allocation $\{x^a\}_{a\in A}$ is a Walrasian allocation if there exists $p\in \mathbb{R}_++^\ell$ such that $Z(p)=0$ and $x^a = \hat{x}(p)$.

Definition

An allocation $\{x^a\}_{a\in A}$ is a Walrasian allocation if there exists $p\in \mathbb{R}_++^\ell$ such that $Z(p)=0$ and $x^a = \hat{x}(p)$.

Theorem

Suppose U^a is monotone for all agent $a \in A$. Then every Walrasian allocation is Pareto optimal.

Intepretation: equilibrium allocation is always efficient.

Definition

An allocation $\{x^a\}_{a\in A}$ is a Walrasian allocation if there exists $p\in \mathbb{R}_++^\ell$ such that $Z(p)=0$ and $x^a = \hat{x}(p)$.

Theorem

Suppose U^a is monotone for all agent $a \in A$. Then every Walrasian allocation is Pareto optimal.

Intepretation: equilibrium allocation is always efficient.

Remark: we do not assume quasi-concave or continuous utility here.

Proof by contradiction: Let $\{x^a\}_{a \in A}$ be any Walrasian allocation and let p be the market clearing price.

Proof by contradiction: Let $\{x^a\}_{a \in A}$ be any Walrasian allocation and let p be the market clearing price.

Suppose that there exists an allocation $\{z^a\}_{a\in A}$ that is a Pareto improvement of $\{\hat{x}^a\}_{a\in A}$:

$$
U^a(z^a) \ge U^a(\hat{x}^a(p^*)), \quad \forall a \in A,
$$

and $\exists \tilde{a}$ such that it holds with a strict inequality.

Proof by contradiction: Let $\{x^a\}_{a \in A}$ be any Walrasian allocation and let p be the market clearing price.

Suppose that there exists an allocation $\{z^a\}_{a\in A}$ that is a Pareto improvement of $\{\hat{x}^a\}_{a\in A}$:

$$
U^a(z^a) \ge U^a(\hat{x}^a(p^*)), \quad \forall a \in A,
$$

and $\exists \tilde{a}$ such that it holds with a strict inequality.

Lemma $\textbf{1}$ $p \cdot z^a \geq p \cdot \omega^a$ for all agents a . $2\;\;p\cdot z^{\tilde{a}}>p\cdot \omega^{\tilde{a}}.$

Proof by contradiction: Let $\{x^a\}_{a \in A}$ be any Walrasian allocation and let p be the market clearing price.

Suppose that there exists an allocation $\{z^a\}_{a\in A}$ that is a Pareto improvement of $\{\hat{x}^a\}_{a\in A}$:

$$
U^a(z^a) \ge U^a(\hat{x}^a(p^*)), \quad \forall a \in A,
$$

and $\exists \tilde{a}$ such that it holds with a strict inequality.

Lemma
\n**①**
$$
p \cdot z^a \geq p \cdot \omega^a
$$
 for all agents a.
\n**②** $p \cdot z^{\tilde{a}} > p \cdot \omega^{\tilde{a}}$.

Combining the inequalities, we have that

$$
p \cdot \left[\sum_{a \in A} z^a\right] > p^* \cdot \left[\sum_{a \in A} \omega^a\right],
$$

which implies that $\sum_{a\in A} z^a\neq \sum_{a\in A} \omega^a=\bar{\omega}$, violating the feasibility condition.

Proof of (1) $p \cdot z^a \geq p \cdot \omega^a$ for all agents a.

Proof of (1) $p \cdot z^a \geq p \cdot \omega^a$ for all agents a. Suppose by contradiction that $\exists a, p \cdot z^a < p \cdot \omega^a$.

Proof of (1) $p \cdot z^a \geq p \cdot \omega^a$ for all agents a. Suppose by contradiction that $\exists a, p \cdot z^a < p \cdot \omega^a$. $\Rightarrow \exists \epsilon > 0$ such that

$$
p\cdot (z^a+(\epsilon,\epsilon,...,\epsilon)) < p\cdot \omega^a.
$$

Proof of (1) $p \cdot z^a \geq p \cdot \omega^a$ for all agents a. Suppose by contradiction that $\exists a, p \cdot z^a < p \cdot \omega^a$. $\Rightarrow \exists \epsilon > 0$ such that

$$
p \cdot (z^a + (\epsilon, \epsilon, ..., \epsilon)) < p \cdot \omega^a.
$$

 $\Rightarrow z^a + (\epsilon, \epsilon, ..., \epsilon)$ is budget feasible for agent a .

Proof of (1) $p \cdot z^a \geq p \cdot \omega^a$ for all agents a. Suppose by contradiction that $\exists a, p \cdot z^a < p \cdot \omega^a$. $\Rightarrow \exists \epsilon > 0$ such that

$$
p \cdot (z^a + (\epsilon, \epsilon, ..., \epsilon)) < p \cdot \omega^a.
$$

 $\Rightarrow z^a + (\epsilon, \epsilon, ..., \epsilon)$ is budget feasible for agent a . \Rightarrow by monotonicity of U^a ,

$$
U^{a}(z^{a}+(\epsilon, \epsilon, ..., \epsilon)) > U^{a}(z^{a}) \geq U^{a}(x^{a}).
$$

Proof of (1) $p \cdot z^a \geq p \cdot \omega^a$ for all agents a. Suppose by contradiction that $\exists a, p \cdot z^a < p \cdot \omega^a$. $\Rightarrow \exists \epsilon > 0$ such that

$$
p \cdot (z^a + (\epsilon, \epsilon, ..., \epsilon)) < p \cdot \omega^a.
$$

 $\Rightarrow z^a + (\epsilon, \epsilon, ..., \epsilon)$ is budget feasible for agent a . \Rightarrow by monotonicity of U^a ,

$$
U^{a}(z^{a}+(\epsilon, \epsilon, ..., \epsilon)) > U^{a}(z^{a}) \geq U^{a}(x^{a}).
$$

Contradiction to the optimality of allocation x^a given price p .

Proof of (1) $p \cdot z^a \geq p \cdot \omega^a$ for all agents a. Suppose by contradiction that $\exists a, p \cdot z^a < p \cdot \omega^a$. $\Rightarrow \exists \epsilon > 0$ such that

$$
p \cdot (z^a + (\epsilon, \epsilon, ..., \epsilon)) < p \cdot \omega^a.
$$

 $\Rightarrow z^a + (\epsilon, \epsilon, ..., \epsilon)$ is budget feasible for agent a . \Rightarrow by monotonicity of U^a ,

$$
U^{a}(z^{a}+(\epsilon, \epsilon, ..., \epsilon)) > U^{a}(z^{a}) \geq U^{a}(x^{a}).
$$

Contradiction to the optimality of allocation x^a given price p .

Proof of (2) $p\cdot z^{\tilde{a}}>p\cdot \omega^{\tilde{a}}.$

Proof of (1) $p \cdot z^a \geq p \cdot \omega^a$ for all agents a. Suppose by contradiction that $\exists a, p \cdot z^a < p \cdot \omega^a$. $\Rightarrow \exists \epsilon > 0$ such that

$$
p \cdot (z^a + (\epsilon, \epsilon, ..., \epsilon)) < p \cdot \omega^a.
$$

 $\Rightarrow z^a + (\epsilon, \epsilon, ..., \epsilon)$ is budget feasible for agent a . \Rightarrow by monotonicity of U^a ,

$$
U^{a}(z^{a}+(\epsilon, \epsilon, ..., \epsilon)) > U^{a}(z^{a}) \geq U^{a}(x^{a}).
$$

Contradiction to the optimality of allocation x^a given price p .

Proof of (2) $p\cdot z^{\tilde{a}}>p\cdot \omega^{\tilde{a}}.$ (i) $U^{\tilde{a}}(z^{\tilde{a}}) > U^{\tilde{a}}(x^{\tilde{a}}).$

Proof of (1) $p \cdot z^a \geq p \cdot \omega^a$ for all agents a. Suppose by contradiction that $\exists a, p \cdot z^a < p \cdot \omega^a$. $\Rightarrow \exists \epsilon > 0$ such that

$$
p \cdot (z^a + (\epsilon, \epsilon, ..., \epsilon)) < p \cdot \omega^a.
$$

 $\Rightarrow z^a + (\epsilon, \epsilon, ..., \epsilon)$ is budget feasible for agent a . \Rightarrow by monotonicity of U^a ,

$$
U^{a}(z^{a}+(\epsilon, \epsilon, ..., \epsilon)) > U^{a}(z^{a}) \geq U^{a}(x^{a}).
$$

Contradiction to the optimality of allocation x^a given price p .

Proof of (2) $p\cdot z^{\tilde{a}}>p\cdot \omega^{\tilde{a}}.$ (i) $U^{\tilde{a}}(z^{\tilde{a}}) > U^{\tilde{a}}(x^{\tilde{a}}).$ (ii) $x^{\tilde{a}}$ maximizes agent \tilde{a} 's utility in budget set $B(p, p\cdot\omega^{\tilde{a}}).$

Proof of (1) $p \cdot z^a \geq p \cdot \omega^a$ for all agents a. Suppose by contradiction that $\exists a, p \cdot z^a < p \cdot \omega^a$. $\Rightarrow \exists \epsilon > 0$ such that

$$
p \cdot (z^a + (\epsilon, \epsilon, ..., \epsilon)) < p \cdot \omega^a.
$$

 $\Rightarrow z^a + (\epsilon, \epsilon, ..., \epsilon)$ is budget feasible for agent a . \Rightarrow by monotonicity of U^a ,

$$
U^{a}(z^{a}+(\epsilon, \epsilon, ..., \epsilon)) > U^{a}(z^{a}) \geq U^{a}(x^{a}).
$$

Contradiction to the optimality of allocation x^a given price p .

Proof of (2) $p\cdot z^{\tilde{a}}>p\cdot \omega^{\tilde{a}}.$ (i) $U^{\tilde{a}}(z^{\tilde{a}}) > U^{\tilde{a}}(x^{\tilde{a}}).$ (ii) $x^{\tilde{a}}$ maximizes agent \tilde{a} 's utility in budget set $B(p, p\cdot\omega^{\tilde{a}}).$ (i) and (ii) \Rightarrow bundle $z^{\tilde{a}}$ is not budget feasible for agent \tilde{a} , i.e.,

$$
p \cdot z^{\tilde{a}} > p \cdot \omega^{\tilde{a}}.
$$

Can Pareto optimal allocation implemented as a Walrasian equilibrium given any endowment? No!

Illustration of in Edgeworth box with two commodities.

Endowment of each agent $a \in A$:

- commodities ω^a ;
- monetary transfer t^a .

Endowment of each agent $a \in A$:

- commodities ω^a ;
- monetary transfer t^a .

Given market price p, the budget of agent a is $w^a = p\omega^a + t^a$.

Endowment of each agent $a \in A$:

- commodities ω^a ;
- monetary transfer t^a .

Given market price p, the budget of agent a is $w^a = p\omega^a + t^a$.

Budget balance constraint: $\sum_{a\in A}t^a=0.$

Endowment of each agent $a \in A$:

- commodities ω^a ;
- monetary transfer t^a .

Given market price p, the budget of agent a is $w^a = p\omega^a + t^a$.

Budget balance constraint: $\sum_{a\in A}t^a=0.$

Definition

x is a Walrasian allocation with transfers if there exists a price p and an endowment of monetary transfer t^a for each agent a such that sum of excess demand is zero.

Theorem

Suppose that U^a is strongly monotone, strictly quasiconcave, and continuous for all a . Then every Pareto optimal allocation is a Walrasian allocation with transfers.

Quasiconcavity is crucial for the existence of supporting price.

Theorem

Suppose that U^a is strongly monotone, strictly quasiconcave, and continuous for all a . Then every Pareto optimal allocation is a Walrasian allocation with transfers.

Quasiconcavity is crucial for the existence of supporting price.

Motivation for exchange economy with transfers:

government collects taxes and redistributes them as subsidies to achieve a more efficient allocation in equilibrium.

Let $\{y^a\}_{a\in A}$ be a Pareto optimal allocation.

Consider an exchange economy (without transfers) with endowment $\{y^a\}_{a\in A}.$

Let $\{y^a\}_{a\in A}$ be a Pareto optimal allocation.

Consider an exchange economy (without transfers) with endowment $\{y^a\}_{a\in A}.$

Given properties of U^a , Walrasian equilibrium exists in this economy with price $p^* \gg 0$:

$$
\sum_{a \in A} \bar{x}^a(p^*, p^* \cdot y^a) = \sum_{a \in A} y^a = \bar{\omega}.
$$

Let $\{y^a\}_{a\in A}$ be a Pareto optimal allocation.

Consider an exchange economy (without transfers) with endowment $\{y^a\}_{a\in A}.$

Given properties of U^a , Walrasian equilibrium exists in this economy with price $p^* \gg 0$:

$$
\sum_{a \in A} \bar{x}^a(p^*, p^* \cdot y^a) = \sum_{a \in A} y^a = \bar{\omega}.
$$

Equilibrium condition

 $\Rightarrow u^a(\bar{x}^a(p^*,p^*\cdot y^a)) \geq u^a(y^a)$ for all a since y^a is budget feasible.

Let $\{y^a\}_{a\in A}$ be a Pareto optimal allocation.

Consider an exchange economy (without transfers) with endowment $\{y^a\}_{a\in A}.$

Given properties of U^a , Walrasian equilibrium exists in this economy with price $p^* \gg 0$:

$$
\sum_{a \in A} \bar{x}^a(p^*, p^* \cdot y^a) = \sum_{a \in A} y^a = \bar{\omega}.
$$

Equilibrium condition

 $\Rightarrow u^a(\bar{x}^a(p^*,p^*\cdot y^a)) \geq u^a(y^a)$ for all a since y^a is budget feasible. $\Rightarrow u^a(\bar{x}^a(p^*,p^*\cdot y^a))=u^a(y^a)$ since $\{y^a\}_{a\in A}$ is Pareto optimal.

Let $\{y^a\}_{a\in A}$ be a Pareto optimal allocation.

Consider an exchange economy (without transfers) with endowment $\{y^a\}_{a\in A}.$

Given properties of U^a , Walrasian equilibrium exists in this economy with price $p^* \gg 0$:

$$
\sum_{a \in A} \bar{x}^a(p^*, p^* \cdot y^a) = \sum_{a \in A} y^a = \bar{\omega}.
$$

Equilibrium condition

 $\Rightarrow u^a(\bar{x}^a(p^*,p^*\cdot y^a)) \geq u^a(y^a)$ for all a since y^a is budget feasible. $\Rightarrow u^a(\bar{x}^a(p^*,p^*\cdot y^a))=u^a(y^a)$ since $\{y^a\}_{a\in A}$ is Pareto optimal. $\Rightarrow y^a = \bar{x}^a(p^*,p^*\cdot y^a)$ since demand is unique (because U^a is strictly quasiconcave).

Let $\{y^a\}_{a\in A}$ be a Pareto optimal allocation.

Consider an exchange economy (without transfers) with endowment $\{y^a\}_{a\in A}.$

Given properties of U^a , Walrasian equilibrium exists in this economy with price $p^* \gg 0$:

$$
\sum_{a \in A} \bar{x}^a(p^*, p^* \cdot y^a) = \sum_{a \in A} y^a = \bar{\omega}.
$$

Equilibrium condition

 $\Rightarrow u^a(\bar{x}^a(p^*,p^*\cdot y^a)) \geq u^a(y^a)$ for all a since y^a is budget feasible. $\Rightarrow u^a(\bar{x}^a(p^*,p^*\cdot y^a))=u^a(y^a)$ since $\{y^a\}_{a\in A}$ is Pareto optimal. $\Rightarrow y^a = \bar{x}^a(p^*,p^*\cdot y^a)$ since demand is unique (because U^a is strictly quasiconcave). Define $t^a = p^* \cdot y^a - p^* \cdot \omega^a$. Then

$$
\sum_{a \in A} t^a = p^* \cdot \left(\sum_{a \in A} y^a - \sum_{a \in A} \omega^a \right) = 0.
$$