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Logistics

Instructor: Yingkai Li

Office: AS2 05-21

Office hour: by appointment.

No course for the Chinese New Year.

Schedule a make-up class for Feb. 6th.
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Course Philosophy

Economic analysis using algorithmic tools.

approximation analysis: design and analysis of simple mechanisms in complex
environments where finding the optimal is infeasible or undesirable.

robust analysis: design robust mechanisms in the absence of detailed knowledge about
the environment.

data analysis: how to design good mechanisms with access to historical data.

Goal: understand the design of good mechanisms in practical applications.

online platforms (Google/Meta);

resource allocations (FCC Spectrum/Land Resource/Cloud Computing);

blockchains and cryptocurrencies (Bitcoin);

recommendation system (Yelp/Netflix);

etc.
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Reading Lists

1 Jason Hartline. Mechanism Design and Approximation.
https://jasonhartline.com/MDnA/

2 Tim Roughgarden. Twenty Lectures on Algorithmic Game Theory.
https://timroughgarden.org/notes.html

3 Aleksandrs Slivkins. Introduction to Multi-Armed Bandits.
https://arxiv.org/abs/1904.07272

Additional readings:

Noam Nisan, Tim Roughgarden, Éva Tardos, Vijay V. Vazirani. Algorithmic Game
Theory. Cambridge University Press.

Federico Echenique, Nicole Immorlica, Vijay V. Vazirani. Online and Matching-Based
Market Design. Cambridge University Press.
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Prerequisite

Required: Basics in probabilities, calculus, and how to prove formal theorems.

Not required: solid background knowledge about algorithm design (CS), mechanism design
(Econ), or game theory (Econ). Coding is also not required.
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Evaluations

Two assignments (40%); due on March 10th, April 11th.

Course project (30%); due on April 11th, mid-term review on March 14th.

Final exam (30%); scheduled on May 6th, 5pm.

Survey paper (25%); due on April 4th; only for HM students.
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Syllabus

Week 1: Preview of the course

Week 2/3/4: Auctions: welfare and revenue maximization

Week 5/6: Prior-independent and prior-free analysis

Week 7/8/9: Learning agents and mechanism design under learning

Week 10: Contracts and moral hazard

Week 11/12: Topic courses: fairness, privacy, etc. Details depend on interests.

Week 13: Project presentation by students
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Basics on Game Theory
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Incomplete Information Games

A static game with incomplete information is denoted as
ΓI =

(
N, (Ai)i∈N , (ui)i∈N , (Θi)i∈N , µ

)
where

N is the set of players;

Ai is the set of player i’s actions; (what the agents can do)

Θi is the set of player i’s “types” where θi ∈ Θi is private information of i; (what the
agents know)

ui : A×Θ → R is player i’s payoff function (where A = ×i∈NAi, and Θ = ×i∈NΘi).

µ (θ) is the probability that a type profile θ ∈ Θ occurs.

µ is called a common prior.

Let µi denote the marginal distribution of µ on Θi, i.e., µi(θi) ≡
∑

θ−i∈Θ−i
µ(θi, θ−i).

Let µ(θ−i|θi) be the belief of agent i over θ−i conditional on his type being θi.
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Strategies and Bayesian Nash Equilibrium

A strategy of player i in ΓI is a mapping si : Θi → ∆(Ai).

si is a pure strategy if the mapping is deterministic, i.e., si : Θi → Ai. Let Si be the set
of pure strategies for i.

Definition (BNE)

A strategy profile s is a Bayesian Nash Equilibrium if for any agent i and any type θi (such
that µi(θi) > 0), for any action a∗i in the support of si(θi), we have

a∗i ∈ argmax
ai∈Ai

∑
θ−i∈Θ−i

µ(θ−i|θi) · Ea−i∼s−i(θ−i)[ui(ai, a−i, θ)] .

Informal definition of BNE: all agents are doing the best they can given what they think others
are doing.
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Historical Review: Selfish Routing
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Selfish Routing
Suppose now the government has the funding to build another road in the current system.
Should the government do it?

Sometime no, not even when it’s costless to do so!

Braess’s paradox [Pigou ’20; Braess ’68]

adding more roads could lead to more severe congestion.

Example: agents travel from A to B.

A → C, D → B: travel time x, fraction of travelers.

A → D, C → B: travel time 1.

New road in network: open a portal from C to D with zero travel time.

Network Before Adding Shortcut

A C

D

B
x 1

1 x

Network After Adding Shortcut

A C

D

B
x 1

1 x0
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Braess’s Paradox

Network Before Adding Shortcut

A C

D

B
x 1

1 x

Network After Adding Shortcut

A C

D

B
x 1

1 x0

Equilibrium before shortcut: 1
2 chooses A → C → B, 1

2 chooses A → D → B.

total travel time is 3
2 for all agents.

Equilibrium after shortcut: all agents choose A → C → D → B.

total travel time is 2 for all agents.

2 > 3
2 : everyone suffers from having an additional shortcut!
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Selfish Routing
In the previous example, the efficiency loss due to strategic behavior is 2/3

2 = 4
3 .

not so bad compared to the first-best scenario.

Question: can we quantify the worst-case efficiency loss due to strategic behavior (Price of
Anarchy (PoA))?

if PoA is small in selfish routing, building more roads is always approximately optimal
since it always improves the first best.

Table: The worst-case POA with cost functions that are polynomials with nonnegative coefficients and
degree at most d. See https://theory.stanford.edu/~tim/f13/l/l11.pdf

Description Typical Representative Price of Anarchy
Linear ax+ b 4

3

Quadratic ax2 + bx+ c
3√3 3√3−2
3 3√3−2

≈ 1.6

Cubic ax3 + bx2 + cx+ d
4√4 4√4−3
4 4√4−3

≈ 1.9

Polynomials of degree ≤ d
∑d

i=0 aix
i (d+1) d+1√d+1

(d+1) d+1√d+1−d
≈ d

ln d
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Auctions and Welfare Analysis
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Auctions

Auctions: a single item, n agents.

each agent i has value vi ∼ Fi;

How to allocate the item efficiently?

ideally we want to give the item to the agent with highest vi.

Use transfers to discipline the agent:

each agent i has utility ui = vixi − pi.
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Second-price Auction

Second-price Auction: Each bidder i place a bid bi ≥ 0 in the auction.

highest bidder wins where ties are broken uniform randomly;

winner pays the second highest bid.

Truthful bidding as equilibrium: all bidders maximize their utilities by bidding bi(vi) = vi.

if maxj ̸=i bj ≥ vi: bidder i does not gain by bidding higher to win;

if maxj ̸=i bj < vi: bidder i does not gain by bidding lower since the payment won’t
decrease conditional on winning, and losing is worse.

Efficiency in equilibrium: in second-price auction, highest value agent always wins the item in
the truthful bidding equilibrium.
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Second-price Auction

Even with strong efficiency guarantees, second-price auction is still not adopted in many
practical applications.

second-price auction is not credible: the seller may attempt to get more revenue by
misreporting the second highest bid.

equilibrium selection.

Understand the efficiency guarantee of simple and practical mechanisms.

Posted pricing mechanisms: offer price pi to agent i. The item is sold to the first agent
who is willing to purchase.

First-price auction: each bidder i places a bid bi ≥ 0 in the auction. Highest bid wins and
the winner pays his bid.
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Worst-case Approximations

Given a distribution F over values, denote the optimal welfare as

Wel(F ) = Ev∼F

[
max

i
vi

]
.

For any mechanism M , let M(F ) be the social welfare achieved in mechanism M given
distribution F . The worst-case approximation of mechanism M is

APX(M) ≜ max
F

Wel(F )

M(F )
.

What are the worst-case approximations for posted pricing mechanisms and first-price auction?
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Job Hiring Process

Its connection to posted pricing mechanisms will be illustrated later.

A firm want to hire for a vacant position.

optimal policy: interview all the candidates, and selects the best one after the interviews.

may not be feasible in certain scenarios, e.g., some candidates cannot wait long for the
decisions.

Online Interview Process

the candidates arrive in an online order;

the firm observes the true quality of the current candidate, but not the quality of future
candidates;

the firm needs to make an immediate hiring decision for each candidate.

Question: how to design good online hiring policies? What is the loss of adhering to online
policies?
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Online Selection Problems

Problem: n items arriving online.

item i has value vi ∼ Fi;

the agent knows F1, . . . , Fn at time 0.

at time i ≤ n, the agent observes value vi and decides whether to select item i (if the
selection has not been made).

Note: the arrival order of the items is unknown to the agent.
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Prophet Inequalities

How to evaluate the performance of an online policy?

Compare to a prophet who can foresee all future values.

the prophet can guarantee an expected value of E[maxi vi].

Question: what is the performance guarantees using online policies compared to the prophet?

Naive solution: randomly select a value (RS).

the probability of choosing the highest value is 1
n ⇒ APX(RS) = n.

can we do better?

The designer cannot foresee the future values. How would she know whether to select the
current value or not?
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Threshold Policies

The designer knows the distribution of values and can predict the expected gain from the
future if the current value is not selected.

Intuitively, the designer should stop if the current value exceeds the predicted future value.

Simple policy in practice: threshold policies

set threshold τ ;

at time i, selects item i if and only if vi ≥ τ .

τ is an approximation of what the designer can gain in the future.
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Prophet Inequalities

Theorem

There exists a threshold policy that achieves a 2-approximation, i.e., it achieves expected value
at least 1

2E[maxi vi].

Consider threshold τ and let pτ be the probability that an item is selected given τ .
The expected performance of the algorithm is

ALGτ = pτ · τ +
∑
i≤n

Pr[vj < τ, ∀j < i] · E
[
(vi − τ)+

]
≥ pτ · τ + (1− pτ ) ·

∑
i≤n

E
[
(vi − τ)+

]
≥ pτ · τ + (1− pτ ) ·

(
E

[
max

i
vi

]
− τ

)
Last inequality holds since maxi vi ≤ τ +maxi(vi − τ)+ ≤ τ +

∑
i(vi − τ)+.
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=
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2
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Hard Instances

Can we do better than 2? No!

Example: two items.

Item 1: v1 = 1 with probability 1.

Item 2: v2 = z w.p. 1
z , and 0 otherwise.

Any Online Policy:

If item 1 is chosen, the expected value is v1 = 1.

If item 1 is not chosen, the expected value is at most E[v2] = 1.

Prophet: select item 1 if and only if v2 = 0. The expected value of the prophet is
z · 1

z + (1− 1
z ) · 1 = 2− 1

z .

The gaps is 2 when z → ∞.
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Connection to Auctions

Prophet inequality: n items

value distributions F = F1×· · ·×Fn;

threshold τ ;

arrival order π.

Posted pricing mechanism: n agents

value distributions F = F1×· · ·×Fn;

price pi = τ for each agent i;

tie breaking rule π.

Given any valuation profile v = (v1, . . . , vn), the selected value and the optimal value in both
problems are the same.

Posted pricing mechanism has a 2-approximation to the optimal welfare.

Question: how do we evaluation this approximation?

is 2 a good approximation or a bad approximation?
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Asymptotic Analysis

f(n) = O(g(n)) : limn→∞
f(n)
g(n) < ∞;

f(n) = Ω(g(n)) : limn→∞
f(n)
g(n) > 0.

f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n));

f(n) = o(g(n)) if f(n) = O(g(n)) and f(n) ̸= Ω(g(n));

f(n) = ω(g(n)) if f(n) ̸= O(g(n)) and f(n) = Ω(g(n));

In the context of auctions, n can be viewed as the number of agents.

Example:

2n2 + 8n+ 100 = O(n2);

16n3 = o(2n).

4n− 32 = Θ(n).

log(n) = o(nϵ) for any constant ϵ > 0.
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Asymptotic Analysis

A mechanism M has a constant approximation if APX(M) = O(1).

usually we view constant approximation as a good approximation since the worst-case
performance does not degrade as the problem instance grows large (n → ∞).

Usually an approximation is not ideal if it is a super-constant, i.e., APX(M) = ω(1).

E.g., APX(M) = Θ(log(n)), or APX(M) = Θ(n2).

Posted pricing mechanism is a 2-approximation to the optimal welfare: great!
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First-Price Auction

First-price Auction: Each bidder i places a bid bi ≥ 0 in the auction.

highest bidder wins where ties are broken uniform randomly;

winner pays his bid.

No simple characterization of equilibrium behaviors.

the equilibrium outcome is often inefficient.

Question: what is the maximum inefficiency of first-price auction.
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First-Price Auction

Theorem (Jin and Lu ’22)

The first-price auction is an e2

e2−1
≈ 1.16 approximation to optimal welfare.

A simpler proof to show that the first price auction is a 2-approximation to optimal welfare.

Intuition: we don’t know how the agents behave, but we know they should not perform too
bad in equilibrium.
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2-approximation of First-Price Auction

For each agent i, one possible strategy is to bid b∗i =
vi
2 regardless of the opponents’ strategy.

ui(b
∗
i ,b−i; vi) ≥

1

2
vi − p(b).

since the bidder either wins and obtains utility vi − b∗i = vi − 1
2vi =

1
2vi ≥

1
2vi − p(b), or loses

and obtains utility 0 ≥ 1
2vi − p(b).

Let x∗i be the welfare optimal allocation. Since the bid b∗i =
vi
2 guarantees non-negative utility,

ui(b
∗
i ,b−i; vi) ≥

(
1

2
vi − p(b)

)
· x∗i (v).

Summing this inequality over all bidders i, we obtain

n∑
i=1

ui(b
∗
i ,b−i; vi) ≥

n∑
i=1

(
1

2
vi − p(b)

)
· x∗i (v) =

1

2
OPT(v)− p(b),

for every valuation profile v and bid profile b.
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2-approximation of First-Price Auction
Let s be a Bayes-Nash equilibrium: for every player i with valuation vi,

Ev−i [ui(s(v); vi)] ≥ Ev−i [ui(b
∗
i , s−i(v−i); vi)] .

Taking expectations over vi and summing it up for all n agents, we obtain

n∑
i=1

Ev [ui(s(v); vi)] ≥
n∑

i=1

Ev [ui(b
∗
i , s−i(v−i); vi)] ≥ Ev

[
1

2
OPT(v)− p(s(v))

]
.

Note that for every bid profile b and valuation profile v, we have

n∑
i=1

ui(b; vi) = SW (b;v)− p(b).

Combining the inequalities yields

Ev [SW (s(v);v)] =

n∑
i=1

Ev [ui(s(v); vi)] + Ev [p(s(v))] ≥
1

2
Ev [OPT(v)] .
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Mechanism Design
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Mechanism Design

A mechanism design instance is denoted as ΓM =
(
N,Ω, (ui)i∈N , (Θi)i∈N , µ

)
where

N is the set of players;

Ω is the set of outcomes;

Θi is the set of player i’s “types” where θi ∈ Θi is private information of i;

ui : Ω×Θ → R is player i’s payoff function;

µ (θ) is the probability that a type profile θ ∈ Θ occurs.
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VCG Mechanisms

VCG mechanism: mechanism that implements efficient allocation in general environment.

allocation: chooses outcome

ω∗ = argmax
ω∈Ω

∑
i

vi(ω, θi).

payment: each agent i pays his externality on the welfare

pi(θ) = max
ω∈Ω

∑
j ̸=i

vj(ω, θj)−
∑
j ̸=i

vj(ω
∗, θj) ≥ 0.
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VCG Mechanisms

Agent i’s utility in VCG mechanism:

vi(ω
∗, θi)−

max
ω∈Ω

∑
j ̸=i

vj(ω, θj)−
∑
j ̸=i

vj(ω
∗, θj)


=

∑
j

vj(ω
∗, θj)−max

ω∈Ω

∑
j ̸=i

vj(ω, θj) ≥ 0.

Agent i’s utility is maximized by truthfully reporting his type to choose the allocation ω∗ that
maximizes the welfare.
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VCG Mechanisms

In the special case of single-item auction: item is allocated to the highest bidder

pi(θ) = max
ω∈Ω

∑
j ̸=i

vj(ω, θj)−
∑
j ̸=i

vj(ω
∗, θj).

If i is the highest bidder:

maxω∈Ω
∑

j ̸=i vj(ω, θj) is the second highest bid;∑
j ̸=i vj(ω

∗, θj) = 0.

If i is not the highest bidder:

maxω∈Ω
∑

j ̸=i vj(ω, θj) is the highest bid;∑
j ̸=i vj(ω

∗, θj) is also the highest bid.

VCG mechanism reduces to the second-price auction.
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Welfare Maximization

Implementing the VCG mechanism requires solving the optimal allocation problem:

ω∗ = argmax
ω∈Ω

∑
i

vi(ω, θi).

Is this tractable in practice?

Example: (Knapsack problem) consider the allocation problem of servicing agents, where
Ω ⊆ 2N .

each agent has private value θi for being serviced;

servicing each agent i requires a resource of ri;

there is a total budget of B on resource;

allocation ω is feasible if and only if
∑

i∈ω ri ≤ B.

How to find the optimal allocation? Trying all combination requires time exponential in |N |.
Not practical if n = |N | is large!
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Running Time

An algorithm is a polynomial-time algorithm if there exists c ∈ (0,∞) such that its running
time f(n) satisfies f(n) = O(nc).

Enumerating all subsets of N is not a polynomial-time algorithm: 2n = ω(nc) for any c < ∞.

Under the assumption that P ̸=NP, the knapsack problem does not have any polynomial-time
algorithm.

There exist polynomial-time algorithms for approximating the optimal solutions.

Question: does there exist polynomial-time mechanism that guarantees good welfare
approximations?
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